Is there a better way to write named-pipes in F#? - f#

I am new to F#. I am trying to communicate with java from F# using named pipe. The code below works but I am not sure if there is a better way to do this (I know the infinite loop is a bad idea but this is just a proof of concept) if anyone have any idea to improve this code please post your comments.
Thanks in advance
Sudaly
open System.IO
open System.IO.Pipes
exception OuterError of string
let continueLooping = true
while continueLooping do
let pipeServer = new NamedPipeServerStream("testpipe", PipeDirection.InOut, 4)
printfn "[F#] NamedPipeServerStream thread created."
//wait for connection
printfn "[F#] Wait for a client to connect"
pipeServer.WaitForConnection()
printfn "[F#] Client connected."
try
// Stream for the request.
let sr = new StreamReader(pipeServer)
// Stream for the response.
let sw = new StreamWriter(pipeServer)
sw.AutoFlush <- true;
// Read request from the stream.
let echo = sr.ReadLine();
printfn "[F#] Request message: %s" echo
// Write response to the stream.
sw.WriteLine("[F#]: " + echo)
pipeServer.Disconnect()
with
| OuterError(str) -> printfn "[F#]ERROR: %s" str
printfn "[F#] Client Closing."
pipeServer.Close()

Well, it doesn't look like anything is throwing OuterError, so I would remove that exception type and unused handling.
I am unsure about your experience level or what type of "better" you are looking for. You way want to read F# async on the server to learn more about async and avoiding blocking threads.

Below you can find a few modifications to your code. Your question is pretty vague so I can't tell exactly where you're wishing to improve your code, but my suggestion uses recursion instead of the while loop (don't worry about stack overflows, F# can handle recursion very well and the whole recursive bit will be optimized into a loop at compile time), makes use of the use keyword (like C#'s using) and will swallow any exception happening in the process of the communication with the client. If an exception occurs, the server will not listen for other connections.
open System.IO
open System.IO.Pipes
let main() =
printfn "[F#] NamedPipeServerStream thread created."
let pipeServer = new NamedPipeServerStream("testpipe", PipeDirection.InOut, 4)
let rec loop() =
//wait for connection
printfn "[F#] Wait for a client to connect"
pipeServer.WaitForConnection()
printfn "[F#] Client connected."
try
// Stream for the request.
use sr = new StreamReader(pipeServer)
// Stream for the response.
use sw = new StreamWriter(pipeServer, AutoFlush = true)
// Read request from the stream.
let echo = sr.ReadLine();
printfn "[F#] Request message: %s" echo
// Write response to the stream.
echo |> sprintf "[F#]: %s" |> sw.WriteLine
pipeServer.Disconnect()
if [A CONDITION WHICH TELLS YOU THAT YOU WANT ANOTHER CONNECTION FROM THE CLIENT] then loop()
with
| _ as e -> printfn "[F#]ERROR: %s" e.Message
loop()
printfn "[F#] Client Closing."
pipeServer.Close()
Also please notice how the AutoFlush is set within the call to the constructor and how the pipeline operator is used to write the echo to the pipe, resulting in what looks (in my opinion) like cleaner code.

Related

Try..With Block is hanging after the First Error F#

I am fairly new to F# and my code is "hanging" after the first instance of an error. It just does nothing really.
This is at the very end of a function the call is a SOAP call to an API endpoint.
try
let a = client.catalogProductCreateAsync(sessionId, "simple","4",priceListItem.sku, productData, "").Result
printfn "%A" a
with ex ->
printfn "%A" ex
"" // blank string returned - not relevant to the above - it's just the end of the funciton

Why won't `Async.SwitchToContext` return?

I'm trying to scrape some websites that need to run their JavaScript before the document has all the data I'm interested in. I'm trying to open a WebBrowser and wait for the document to load, but I can't get the data when I try to switch back to the thread the WebBrowser is on. Trying to run it without switching back to the thread gives casting errors. = (
What's stopping the async from switching threads? How do I fix this problem?
Script
open System
open System.Windows.Forms
open System.Threading
let step a = do printfn "%A" a
let downloadWebSite (address : Uri) (cont : HtmlDocument -> 'a) =
let browser = new WebBrowser()
let ctx = SynchronizationContext.Current
browser.DocumentCompleted.Add (fun _ ->
printfn "Document Loaded" )
async {
do step 1
do browser.Navigate(address)
do step 2
let! _ = Async.AwaitEvent browser.DocumentCompleted
do step 3
do! Async.SwitchToContext ctx
do step 4
return cont browser.Document }
let test =
downloadWebSite (Uri "http://www.google.com") Some
|> Async.RunSynchronously
Output
>
1
2
Document Loaded
3
# It just hangs here. I have to manually interrupt fsi.
- Interrupt
>
4
The problem with your approach is that RunSynchronously blocks the thread that you are trying to use to run the rest of the asynchronous computation using Async.SwitchToContext ctx.
When using F# Interactive, there is one main thread which runs in the F# Interactive and handles the user interactions. This is the thread that can use Windows Forms controls, so you correctly create WebBrowser outside of async. The waiting for DocumentCompleted happens on a thread pool thread (which runs the async workflow), but when you try to switch back to the main thread, it is already blocked by Async.RunSynchronously.
You can avoid blocking the thread by running a loop that calls Application.DoEvents to process events on the main thread (which will also allow it to run the rest of your async). Your downloadWebSite stays the same, but now you wait using:
let test =
downloadWebSite (Uri "http://www.google.com") Some
|> Async.Ignore
|> Async.StartAsTask
while not test.IsCompleted do
System.Threading.Thread.Sleep(100)
System.Windows.Forms.Application.DoEvents()
This is a bit of a hack - and there might be a better way of structuring this if you do not really need to wait for the result (e.g. just return a task and wait before running the next command), but this should do the trick.

Handling WebExceptions properly?

I have the following F# program that retrieves a webpage from the internet:
open System.Net
[<EntryPoint>]
let main argv =
let mutable pageData : byte[] = [| |]
let fullURI = "http://www.badaddress.xyz"
let wc = new WebClient()
try
pageData <- wc.DownloadData(fullURI)
()
with
| :? System.Net.WebException as err -> printfn "Web error: \n%s" err.Message
| exn -> printfn "Unknown exception:\n%s" exn.Message
0 // return an integer exit code
This works fine if the URI is valid and the machine has an internet connection and the web server responds properly etc. In an ideal functional programming world the results of a function would not depend on external variables not passed as arguments (side effects).
What I would like to know is what is the appropriate F# design pattern to deal with operations which might require the function to deal with recoverable external errors. For example if the website is down one might want to wait 5 minutes and try again. Should parameters like how many times to retry and delays between retries be passed explicitly or is it OK to embed these variables in the function?
In F#, when you want to handle recoverable errors you almost universally want to use the option or the Choice<_,_> type. In practice the only difference between them is that Choice allows you to return some information about the error while option does not. In other words, option is best when it doesn't matter how or why something failed (only that it did fail); Choice<_,_> is used when having information about how or why something failed is important. For example, you might want to write the error information to a log; or perhaps you want to handle an error situation differently based on why something failed -- a great use case for this is providing accurate error messages to help users diagnose a problem.
With that in mind, here's how I'd refactor your code to handle failures in a clean, functional style:
open System
open System.Net
/// Retrieves the content at the given URI.
let retrievePage (client : WebClient) (uri : Uri) =
// Preconditions
checkNonNull "uri" uri
if not <| uri.IsAbsoluteUri then
invalidArg "uri" "The URI must be an absolute URI."
try
// If the data is retrieved successfully, return it.
client.DownloadData uri
|> Choice1Of2
with
| :? System.Net.WebException as webExn ->
// Return the URI and WebException so they can be used to diagnose the problem.
Choice2Of2 (uri, webExn)
| _ ->
// Reraise any other exceptions -- we don't want to handle them here.
reraise ()
/// Retrieves the content at the given URI.
/// If a WebException is raised when retrieving the content, the request
/// will be retried up to a specified number of times.
let rec retrievePageRetry (retryWaitTime : TimeSpan) remainingRetries (client : WebClient) (uri : Uri) =
// Preconditions
checkNonNull "uri" uri
if not <| uri.IsAbsoluteUri then
invalidArg "uri" "The URI must be an absolute URI."
elif remainingRetries = 0u then
invalidArg "remainingRetries" "The number of retries must be greater than zero (0)."
// Try to retrieve the page.
match retrievePage client uri with
| Choice1Of2 _ as result ->
// Successfully retrieved the page. Return the result.
result
| Choice2Of2 _ as error ->
// Decrement the number of retries.
let retries = remainingRetries - 1u
// If there are no retries left, return the error along with the URI
// for diagnostic purposes; otherwise, wait a bit and try again.
if retries = 0u then error
else
// NOTE : If this is modified to use 'async', you MUST
// change this to use 'Async.Sleep' here instead!
System.Threading.Thread.Sleep retryWaitTime
// Try retrieving the page again.
retrievePageRetry retryWaitTime retries client uri
[<EntryPoint>]
let main argv =
/// WebClient used for retrieving content.
use wc = new WebClient ()
/// The amount of time to wait before re-attempting to fetch a page.
let retryWaitTime = TimeSpan.FromSeconds 2.0
/// The maximum number of times we'll try to fetch each page.
let maxPageRetries = 3u
/// The URI to fetch.
let fullURI = Uri ("http://www.badaddress.xyz", UriKind.Absolute)
// Fetch the page data.
match retrievePageRetry retryWaitTime maxPageRetries wc fullURI with
| Choice1Of2 pageData ->
printfn "Retrieved %u bytes from: %O" (Array.length pageData) fullURI
0 // Success
| Choice2Of2 (uri, error) ->
printfn "Unable to retrieve the content from: %O" uri
printfn "HTTP Status: (%i) %O" (int error.Status) error.Status
printfn "Message: %s" error.Message
1 // Failure
Basically, I split your code out into two functions, plus the original main:
One function that attempts to retrieve the content from a specified URI.
One function containing the logic for retrying attempts; this 'wraps' the first function which performs the actual requests.
The original main function now only handles 'settings' (which you could easily pull from an app.config or web.config) and printing the final results. In other words, it's oblivious to the retrying logic -- you could modify the single line of code with the match statement and use the non-retrying request function instead if you wanted.
If you want to pull content from multiple URIs AND wait for a significant amount of time (e.g., 5 minutes) between retries, you should modify the retrying logic to use a priority queue or something instead of using Thread.Sleep or Async.Sleep.
Shameless plug: my ExtCore library contains some things to make your life significantly easier when building something like this, especially if you want to make it all asynchronous. Most importantly, it provides an asyncChoice workflow and collections functions designed to work with it.
As for your question about passing in parameters (like the retry timeout and number of retries) -- I don't think there's a hard-and-fast rule for deciding whether to pass them in or hard-code them within the function. In most cases, I prefer to pass them in, though if you have more than a few parameters to pass in, you're better off creating a record to hold them all and passing that instead. Another approach I've used is to make the parameters option values, where the defaults are pulled from a configuration file (though you'll want to pull them from the file once and assign them to some private field to avoid re-parsing the configuration file each time your function is called); this makes it easy to modify the default values you've used in your code, but also gives you the flexibility of overriding them when necessary.

WebSharper force a message passing call to be asynchronous

Knowing an RPC call to a server method that returns unit is a message passing call, I want to force the call to be asynchronous and be able to fire the next server call only after the first one has gone to the server.
Server code:
[<Rpc>]
let FirstCall value =
printfn "%s" value
async.Zero()
[<Rpc>]
let SecondCall() =
"test"
Client code:
|>! OnClick (fun _ _ -> async {
do! Server.FirstCall "test"
do Server.SecondCall() |> ignore
} |> Async.Start)
This seems to crash on the client since returning unit, replacing the server and client code to:
[<Rpc>]
let FirstCall value =
printfn "%s" value
async { return () }
let! _ = Server.FirstCall "test"
Didn't fix the problem, while the following did:
[<Rpc>]
let FirstCall value =
printfn "%s" value
async { return "" }
let! _ = Server.FirstCall "test"
Is there another way to force a message passing call to be asynchronous instead?
This is most definitely a bug. I added it here:
https://bugs.intellifactory.com/websharper/show_bug.cgi?id=468
Your approach is completely legit. Your workaround is also probably the best for now, e.g. instead of returning Async<unit> return Async<int> with a zero and ignore it.
We are busy with preparing the 2.4 release due next week and the fix will make it there. Thanks!
Also, in 2.4 we'll be dropping synchronous calls, so you will have to use Async throughout for RPC, as discussed in https://bugs.intellifactory.com/websharper/show_bug.cgi?id=467 -- primarily motivated by new targets (Android and WP7) that do not support sync AJAX.

Why this F# code does not generate expected output when used with MailboxProcessor?

I was going through one of Don Syme's blog posts Async and Parallel Design Patterns in F#: Agents. However, the following seemingly extremely simple code did not generate output as expected.
type Agent<'T> = MailboxProcessor<'T>
let agent =
Agent.Start(fun inbox ->
async { while true do
let! msg = inbox.Receive()
printfn "got message '%s'" msg } )
for i in 1 .. 10000 do
agent.Post (sprintf "message %d" i)
Instead of expected 10,000 messages , I only got something around 3000 messages using Mono 2.8.1 under Ubuntu, or 15 messages using Visual F# under Windows XP. Am I missing anything here? BTW, I tried to replace the printfn statement with the following File op and ended up with same partial results.
open System.IO
type Agent<'T> = MailboxProcessor<'T>
let agent =
Agent.Start(fun inbox ->
async { while true do
let! msg = inbox.Receive()
use logger = new StreamWriter("a.log", true)
logger.WriteLine("got message '{0}'", msg.ToString())
logger.Close()
} )
for i in 1 .. 10000 do
agent.Post (sprintf "message %d" i)
Just run your code in Win machine - everything is OK. Try to add
ignore( System.Console.ReadKey() )
as a last line, because agent.Post is non-blocking and after posting 10000 messages control flow will move forward, possibly exiting the program.

Resources