Is there a dependency injection framework for Smalltalk? - dependency-injection

I'm running Pharo and I'm just in a use case that sort of screams for Dependency Injection à la Guice. Is there something similar for Smalltalk?
I understand that you can sort of do it all by foot, by just passing in your dependencies explicitly. But that feels awkward and verbose to me.

There is a Smalltalk dialect with strong emphasis on dependency injection. It extends the language such that not only method names but also class names use a dynamic lookup. The novel lookup of class names is most similar to that of methods, except that bubbles up through a series of nested classes rather than along an inheritance chain. Thus you can change the injected classes by changing the nesting environment.
To learn more about the dialect, follow this link.

With Guice, it looks like you define your classes to take certain interfaces as constructor parameters. Then you tell Guice "this interface maps to that class implementing said interface".
That sort've thing is completely unnecessary in Smalltalk, because Smalltalk classes only care about protocols.
If we translated the example into Smalltalk, we could pass any object we liked into the RealBillingService's constructor, as long as that object responded to #logChargeResult: and #logConnectException:, i.e., as long as that object implemented the protocol required of a TransactionLog.
Here's a link to a similar answer to the above.

I am not really an expert but I found this article on google: http://codebetter.com/blogs/jeremy.miller/archive/2006/05/05/144172.aspx
I hope this will lead you in the right direction.
:)

Related

Conceptual: Setter Dependency Injection for Angular 1.*

preface - this is more a conceptual discussion rather than a "how-to". If there is a simple way to implement, then I would certainly be thankful for tips on how but I really want to gain insight on why/why not this isn't possible or a good idea. Any and all comments/constructive criticism is welcome.
property/setter-based dependency injection
new $injector APIs
# pseudo-code
postInjectionHook = 'init'
injectInto = (target)->
for key of target
if $injector/this.$has key
target[key] = $injector.get key
if target[postInjectionHook] is Function
target[postInjectionHook]()
simple controller example
angular.module 'app', []
.controller, 'SomeController', class SomeController
$http: undefined
$q: undefined
init: -> #do some work after we get our dependencies
elsewhere in angular-land
uiController = new SomeController
$injector.injectInto uiController
why?
I love the simplicity of javaScript. It's a very malleable, yet powerful language. However I don't think I'm the only developer that came from another programming language longing for certain features missing from javascript. As such, I utilize inheritance (I know OMG!!!) to structure many base-classes in my application development. Specifically all of my angular controllers inherit from key base classes (e.g. baseViewController, basePopupController, etc.).
Angular's forcing of constructor-based DI makes inheritance somewhat of a pain if I plan to extend beyond the base controller classes. The constructor arguments must be carried over to any subclasses. I wish there were a way to allow different types of dependency injection.

Dependency Injection with Ninject, MVC 3 and using the Service Locator Pattern

Something that has been bugging me since I read an answer on another stackoverflow question (the precise one eludes me now) where a user stated something like "If you're calling the Service Locator, you're doing it wrong."
It was someone with a high reputation (in the hundred thousands, I think) so I tend to think this person might know what they're talking about. I've been using DI for my projects since I first started learning about it and how well it relates to Unit Testing and what not. It's something I'm fairly comfortable with now and I think I know what I'm doing.
However, there are a lot of places where I've been using the Service Locator to resolve dependencies in my project. Once prime example comes from my ModelBinder implementations.
Example of a typical model binder.
public class FileModelBinder : IModelBinder {
public object BindModel(ControllerContext controllerContext,
ModelBindingContext bindingContext) {
ValueProviderResult value = bindingContext.ValueProvider.GetValue("id");
IDataContext db = Services.Current.GetService<IDataContext>();
return db.Files.SingleOrDefault(i => i.Id == id.AttemptedValue);
}
}
not a real implementation - just a quick example
Since the ModelBinder implementation requires a new instance when a Binder is first requested, it's impossible to use Dependency Injection on the constructor for this particular implementation.
It's this way in a lot of my classes. Another example is that of a Cache Expiration process that runs a method whenever a cache object expires in my website. I run a bunch of database calls and what not. There too I'm using a Service Locator to get the required dependency.
Another issue I had recently (that I posted a question on here about) was that all my controllers required an instance of IDataContext which I used DI for - but one action method required a different instance of IDataContext. Luckily Ninject came to the rescue with a named dependency. However, this felt like a kludge and not a real solution.
I thought I, at least, understood the concept of Separation of Concerns reasonably well but there seems to be something fundamentally wrong with how I understand Dependency Injection and the Service Locator Pattern - and I don't know what that is.
The way I currently understand it - and this could be wrong as well - is that, at least in MVC, the ControllerFactory looks for a Constructor for a Controller and calls the Service Locator itself to get the required dependencies and then passes them in. However, I can understand that not all classes and what not have a Factory to create them. So it seems to me that some Service Locator pattern is acceptable...but...
When is it not acceptable?
What sort of pattern should I be on the look out for when I should rethink how I'm using the Service Locator Pattern?
Is my ModelBinder implementation wrong? If so, what do I need to learn to fix it?
In another question along the lines of this one user Mark Seemann recommended an Abstract Factory - How does this relate?
I guess that's it - I can't really think of any other question to help my understanding but any extra information is greatly appreciated.
I understand that DI might not be the answer to everything and I might be going overboard in how I implement it, however, it seems to work the way I expect it to with Unit Testing and what not.
I'm not looking for code to fix my example implementation - I'm looking to learn, looking for an explanation to fix my flawed understanding.
I wish stackoverflow.com had the ability to save draft questions. I also hope whoever answers this question gets the appropriate amount of reputation for answering this question as I think I'm asking for a lot. Thanks, in advance.
Consider the following:
public class MyClass
{
IMyInterface _myInterface;
IMyOtherInterface _myOtherInterface;
public MyClass(IMyInterface myInterface, IMyOtherInterface myOtherInterface)
{
// Foo
_myInterface = myInterface;
_myOtherInterface = myOtherInterface;
}
}
With this design I am able to express the dependency requirements for my type. The type itself isn't responsible for knowing how to instantiate any of the dependencies, they are given to it (injected) by whatever resolving mechanism is used [typically an IoC container]. Whereas:
public class MyClass
{
IMyInterface _myInterface;
IMyOtherInterface _myOtherInterface;
public MyClass()
{
// Bar
_myInterface = ServiceLocator.Resolve<IMyInterface>();
_myOtherInterface = ServiceLocator.Resolve<IMyOtherInterface>();
}
}
Our class is now dependent on creating the specfic instances, but via delegation to a service locator. In this sense, Service Location can be considered an anti-pattern because you're not exposing dependencies, but you are allowing problems which can be caught through compilation to bubble up into runtime. (A good read is here). You hiding complexities.
The choice between one or the other really depends on what your building on top of and the services it provides. Typically if you are building an application from scratch, I would choose DI all the time. It improves maintainability, promotes modularity and makes testing types a whole lot easier. But, taking ASP.NET MVC3 as an example, you could easily implement SL as its baked into the design.
You can always go for a composite design where you could use IoC/DI with SL, much like using the Common Services Locator. You component parts could be wired up through DI, but exposed through SL. You could even throw composition into the mix and use something like the Managed Extensibility Framework (which itself supports DI, but can also be wired to other IoC containers or service locators). It's a big design choice to make, generally my recommendation would be for IoC/DI where possible.
Your specific design I wouldn't say is wrong. In this instance, your code is not responsible for creating an instance of the model binder itself, that's up to the framework so you have no control over that but your use of the service locator could probably be easily changed to access an IoC container. But the action of calling resolve on the IoC container...would you not consider that service location?
With an abstract factory pattern the factory is specialised at creating specific types. You don't register types for resolution, you essentially register an abstract factory and that builds any types that you may require. With a Service Locator it is designed to locate services and return those instances. Similar from an convention point of view, but very different in behaviour.

Avoiding dependency carrying

When coding, I often come across the following pattern:
-A method calls another method (Fine), but the method being called/callee takes parameters, so in the wrapping method, I pass in parameters. Problem is, this dependency carrying can go on and on. How could I avoid this (any sample code appreciated)?
Thanks
Passing a parameter along just because a lower-layer component needs it is a sign of a Leaky Abstraction. It can often be more effective to refactor dependencies to aggregate services and hide each dependency behind an interface.
Cross-cutting concerns (which are often the most common reason to pass along parameters) are best addressed by Decorators.
If you use a DI Container with interception capabilities, you can take advantage of those to implement Decorators very efficiently (some people refer to this as a container's AOP capabilities).
You can use a dependency injection framework. One such is Guice: see http://code.google.com/p/google-guice/
Step 1: Instead of passing everything as separate arguments, group the arguments into a class, let's say X.
Step 2: Add getters to the class X to get the relevant information. The callee should use the getters to get the information instead of relying on parameters.
Step 3: Create an interface class of which class X inherits. Put all the getters in the interface (in C++ this is as pure virtual methods).
Step 4: Make the called methods only depend on the interface.
Refactoring: Introduce Parameter Object
You have a group of parameters that naturally go together?
Replace them with an object.
http://www.refactoring.com/catalog/introduceParameterObject.html
The advantage of the parameter object is that the calls passing them around don't need to change if you add/remove parameters.
(given the context of your answers, I don't think that an IoC library or dependency injection patterns are really what you're after)
Since they cannot be (easily) unit tested, most developers choose to inject objects into Views. Since the views are not (normally) used to construct other views, that is where your DI chain ends. You may have the issue (which I have run into every once in ahwile) where you need to construct objects in the correct order especially when using a DI framework like Unity where an attemt to resolve the object will deadlock. The main thing you need to worry about is circular dependency. In order to do this, read the following article:
Can dependency injection prevent a circular dependency?

Dependency injection through constructors or property setters?

I'm refactoring a class and adding a new dependency to it. The class is currently taking its existing dependencies in the constructor. So for consistency, I add the parameter to the constructor.
Of course, there are a few subclasses plus even more for unit tests, so now I am playing the game of going around altering all the constructors to match, and it's taking ages.
It makes me think that using properties with setters is a better way of getting dependencies. I don't think injected dependencies should be part of the interface to constructing an instance of a class. You add a dependency and now all your users (subclasses and anyone instantiating you directly) suddenly know about it. That feels like a break of encapsulation.
This doesn't seem to be the pattern with the existing code here, so I am looking to find out what the general consensus is, pros and cons of constructors versus properties. Is using property setters better?
Well, it depends :-).
If the class cannot do its job without the dependency, then add it to the constructor. The class needs the new dependency, so you want your change to break things. Also, creating a class that is not fully initialized ("two-step construction") is an anti-pattern (IMHO).
If the class can work without the dependency, a setter is fine.
The users of a class are supposed to know about the dependencies of a given class. If I had a class that, for example, connected to a database, and didn't provide a means to inject a persistence layer dependency, a user would never know that a connection to the database would have to be available. However, if I alter the constructor I let the users know that there is a dependency on the persistence layer.
Also, to prevent yourself from having to alter every use of the old constructor, simply apply constructor chaining as a temporary bridge between the old and new constructor.
public class ClassExample
{
public ClassExample(IDependencyOne dependencyOne, IDependencyTwo dependencyTwo)
: this (dependnecyOne, dependencyTwo, new DependnecyThreeConcreteImpl())
{ }
public ClassExample(IDependencyOne dependencyOne, IDependencyTwo dependencyTwo, IDependencyThree dependencyThree)
{
// Set the properties here.
}
}
One of the points of dependency injection is to reveal what dependencies the class has. If the class has too many dependencies, then it may be time for some refactoring to take place: Does every method of the class use all the dependencies? If not, then that's a good starting point to see where the class could be split up.
Of course, putting on the constructor means that you can validate all at once. If you assign things into read-only fields then you have some guarantees about your object's dependencies right from construction time.
It is a real pain adding new dependencies, but at least this way the compiler keeps complaining until it's correct. Which is a good thing, I think.
If you have large number of optional dependencies (which is already a smell) then probably setter injection is the way to go. Constructor injection better reveals your dependencies though.
The general preferred approach is to use constructor injection as much as possible.
Constructor injection exactly states what are the required dependencies for the object to function properly - nothing is more annoying than newing up an object and having it crashing when calling a method on it because some dependency is not set. The object returned by a constructor should be in a working state.
Try to have only one constructor, it keeps the design simple and avoids ambiguity (if not for humans, for the DI container).
You can use property injection when you have what Mark Seemann calls a local default in his book "Dependency Injection in .NET": the dependency is optional because you can provide a fine working implementation but want to allow the caller to specify a different one if needed.
(Former answer below)
I think that constructor injection are better if the injection is mandatory. If this adds too many constructors, consider using factories instead of constructors.
The setter injection is nice if the injection is optional, or if you want to change it halfway trough. I generally don't like setters, but it's a matter of taste.
It's largely a matter of personal taste.
Personally I tend to prefer the setter injection, because I believe it gives you more flexibility in the way that you can substitute implementations at runtime.
Furthermore, constructors with a lot of arguments are not clean in my opinion, and the arguments provided in a constructor should be limited to non-optional arguments.
As long as the classes interface (API) is clear in what it needs to perform its task,
you're good.
I prefer constructor injection because it helps "enforce" a class's dependency requirements. If it's in the c'tor, a consumer has to set the objects to get the app to compile. If you use setter injection they may not know they have a problem until run time - and depending on the object, it might be late in run time.
I still use setter injection from time to time when the injected object maybe needs a bunch of work itself, like initialization.
I personally prefer the Extract and Override "pattern" over injecting dependencies in the constructor, largely for the reason outlined in your question. You can set the properties as virtual and then override the implementation in a derived testable class.
I perfer constructor injection, because this seems most logical. Its like saying my class requires these dependencies to do its job. If its an optional dependency then properties seem reasonable.
I also use property injection for setting things that the container does not have a references to such as an ASP.NET View on a presenter created using the container.
I dont think it breaks encapsulation. The inner workings should remain internal and the dependencies deal with a different concern.
One option that might be worth considering is composing complex multiple-dependencies out of simple single dependencies. That is, define extra classes for compound dependencies. This makes things a little easier WRT constructor injection - fewer parameters per call - while still maintaining the must-supply-all-dependencies-to-instantiate thing.
Of course it makes most sense if there's some kind of logical grouping of dependencies, so the compound is more than an arbitrary aggregate, and it makes most sense if there are multiple dependents for a single compound dependency - but the parameter block "pattern" has been around for a long time, and most of those that I've seen have been pretty arbitrary.
Personally, though, I'm more a fan of using methods/property-setters to specify dependencies, options etc. The call names help describe what is going on. It's a good idea to provide example this-is-how-to-set-it-up snippets, though, and make sure the dependent class does enough error checks. You might want to use a finite state model for the setup.
I recently ran into a situation where I had multiple dependencies in a class, but only one of the dependencies was necessarily going to change in each implementation. Since the data access and error logging dependencies would likely only be changed for testing purposes, I added optional parameters for those dependencies and provided default implementations of those dependencies in my constructor code. In this way, the class maintains its default behavior unless overridden by the consumer of the class.
Using optional parameters can only be accomplished in frameworks that support them, such as .NET 4 (for both C# and VB.NET, though VB.NET has always had them). Of course, you can accomplish similar functionality by simply using a property that can be reassigned by the consumer of your class, but you don't get the advantage of immutability provided by having a private interface object assigned to a parameter of the constructor.
All of this being said, if you are introducing a new dependency that must be provided by every consumer, you're going to have to refactor your constructor and all code that consumers your class. My suggestions above really only apply if you have the luxury of being able to provide a default implementation for all of your current code but still provide the ability to override the default implementation if necessary.
Constructor injection does explicitly reveal the dependencies, making code more readable and less prone to unhandled run-time errors if arguments are checked in the constructor, but it really does come down to personal opinion, and the more you use DI the more you'll tend to sway back and forth one way or the other depending on the project. I personally have issues with code smells like constructors with a long list of arguments, and I feel that the consumer of an object should know the dependencies in order to use the object anyway, so this makes a case for using property injection. I don't like the implicit nature of property injection, but I find it more elegant, resulting in cleaner-looking code. But on the other hand, constructor injection does offer a higher degree of encapsulation, and in my experience I try to avoid default constructors, as they can have an ill effect on the integrity of the encapsulated data if one is not careful.
Choose injection by constructor or by property wisely based on your specific scenario. And don't feel that you have to use DI just because it seems necessary and it will prevent bad design and code smells. Sometimes it's not worth the effort to use a pattern if the effort and complexity outweighs the benefit. Keep it simple.
This is an old post, but if it is needed in future maybe this is of any use:
https://github.com/omegamit6zeichen/prinject
I had a similar idea and came up with this framework. It is probably far from complete, but it is an idea of a framework focusing on property injection
It depends on how you want to implement.
I prefer constructor injection wherever I feel the values that go in to the implementation doesnt change often. Eg: If the compnay stragtegy is go with oracle server, I will configure my datsource values for a bean achiveing connections via constructor injection.
Else, if my app is a product and chances it can connect to any db of the customer , I would implement such db configuration and multi brand implementation through setter injection. I have just taken an example but there are better ways of implementing the scenarios I mentioned above.
When to use Constructor injection?
When we want to make sure that the Object is created with all of its dependencies and to ensure that required dependencies are not null.
When to use Setter injection?
When we are working with optional dependencies that can be assigned reasonable default values within the class. Otherwise, not-null checks must be performed everywhere the code uses the dependency.
Additionally, setter methods make objects of that class open to reconfiguration or re-injection at a later time.
Sources:
Spring documentation ,
Java Revisited

Any need for dependency injection in Dynamic Languages?

In order to write testable C# code, I use DI heavily.
However lately I've been messing around with IronPython and found that as you can mock any methods/classes/functions etc... you like, the need for DI is gone.
Is this the case for dynamic langagues such as Python?
Instead of:
class Person(Address) {
...
You can have:
class Person() {
...
// Address initialised in here.
For dynamic languages and therefore following manaual DI for dynamic langagues is simply not needed.
Any advice on this?
Dependency Injection is also about how you wire things together --- which has nothing to do about the mockability of depended-on objects. There's a difference between having a Foo-instance that needs a Bar-connection of some kind instantiate it directly and having it completely ignore how it gets that connection as long as it has it.
If you use dependency injection you also gain better testability. But the converse isn't true. Easier testability by being able to overwrite anything doesn't bring the other advantages of dependency injection. There are many component/DI-frameworks for Python available exactly for these reasons.
I strongly disagree with your statement that Dependency Injection is not needed in dynamically typed languages. The reasons for why DI is useful and necessary are completely independent of the typing discipline of the language.
The main difference is that DI in dynamically typed languages is easy and painless: you don't need a heavyweight framework and a gazillion lines of XML configuration.
In Ruby, for example, there are only two DI frameworks. Both were written by a Java programmer. Neither of the two frameworks is used by a single project. Not even by the author of those frameworks.
However, DI is used all over the place in Ruby.
Jamis Buck, who is the author of both of those frameworks gave a talk called Recovering from Enterprise at RubyConf 2008 about how and why he wrote those frameworks and why that was a bad idea, which is well worth watching. There’s also an accompanying blog post if you’d like to read. (Just substitute “Python” everytime he says “Ruby” and everything will be just as valid.)
I'll try again. My last answer missed the question by a mile and zoomed way off topic.
Using pseudo-code, dependency Injection says out with:
class Person
def Chat() {
someOperation("X","Y","Z")
end
end
...
Person.new().Chat()
and in with:
class Person
initialize(a,b,c)
#a=a
#b=b
#c=c
end
def Chat()
someOperation(#a,#b,#c)
end
end
...
Person.new("X","Y","Z").Chat()
,., and generally in with putting the object and the call into different files for SCM purposes.
Whether "X", "Y" or "Z" are mockable (...if they were instead objects...(!)...(!)...) have nothing at all to do with whether DI is good. Really. :-)
DI is just easier in Python or Ruby, like a lot of other tasks, because there's more of a scripting approach, like Jörg says; and also of course less of a culture and a tendency saying that constants and adapters are to get populated into models and global constants.
In practical terms for me DI is the first step towards separating out those application parameters, API constants and factories into separate files to help make your revision tracking report look less spaghetti-like ("Were those extra checkins on the AppController to change the configuration..? Or to update the code...?") and more informing, and more easy to read.
My recommendation: Keep using DI... :-)
I think you're presenting a question that seems to be about best practice but is actually about run-time performance.
Get rid of dependency injection? How can a software release manager sleep at night?
The tests for function to perform must surely slow the program down one or two tads.
// my generic function entry point - IronPython
if func="a":
...
if func="b":
...
if func="c":
...
You can use standard Python with classes... or you can assign function pointers to function pointer members. Just what kind of a beast is it...?? I know, I know. Python I think is difficult to define but I like it. And I like and think highly of dependency injection, not that I've had long where I'd think to assign such a lengthy name to the practice.

Resources