So I have to write my lab report in Italian for my lab class. In class they taught us how to use gnuplot to create graphs, so I'm using it to produce our graphs, which then I need to put in my latex document. The problem is that I have to set the label on the y axes as "velocità", and when I then save the file in ps and convert in pdf the 'à' disappears or is substituted by something else. What I've tried doing is using variations of the commands
set encoding iso_8859_1
set ylabel "velocit\340"
then I saved the plot using set term postscript color, set output "graf.ps", replot, and from the wsl terminal, using ps2pdf, I converted it into a pdf, but when I open the pdf, the letter 'à' doesn't appear anymore, even though it did show in graph previously generated by gnuplot. What should I do? In case, is there another way I can attach the original graph in my latex document?
Gnuplot provides several LaTeX-friendly terminal types. Postscript is not one of them. Postscript's character encodings are idiosyncratic at best. If your goal is to include gnuplot output in latex, then choose a terminal type that is designed for it. Some terminal types (e.g. cairolatex) work only with latex because they depend on latex to do all the text processing. Others (e.g. pdf, png, tikz) produce output that is fully compatible with latex but already has the text embedded in it. It is best to use UTF-8 encoding for everything, including your accented characters. For example:
set term pdf size 7cm,5cm
set output 'myfigure.pdf'
set encoding utf8
set ylabel "velocità"
set xlabel "tempo"
plot [0:10] x**2 title "velocità"
Then in your latex document, something like:
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
...
My TeX document.
\begin{figure}[h]
\includegraphics{myfigure}
\end{figure}
...
I am struggling with latex preview in org-mode.
Basically I am trying to preview someting like this:
* Section2
\[
X=\frac{1}{2}
\]
In general this works, but the overlay image does not contain preceeding/trailing newlines before/after the math environment. Full latex export however would introduce these newlines.
In addition I use the following options in my header in order to keep the original org spacing in my pdf:
#+OPTIONS: \n:t
The combination of employed header and fragment mismatch, however, either messes up readability of my org file, i.e. the preview fragment is put too close to the heading "Section2". Or, when I insert a new line in org, in order to increase the readability, the spacing of my latex export looks strange, due to this extra line plus the preceeding/trailing lines from the math environment.
Can someone give me a hint how I can convince org-mode to create the fragment in accordance with the full latex export?
I am using emacs 26.3 with miktex.
Thanks,
Daniel
Texinfo adds macros starting with '#'. I'm curious how to do that in plain TeX because I'm trying to create a simple TeX framework for my friends' needs and it would be more readable for them.
texinfo essentially replaces plain TeX's backslash with the at sign. This is done by setting the so-called \catcode of the at sign to 0.
Note that with this setting, #command means exactly the same as \command, you don't get a second family of command names.
Note also that designing and implementing a new TeX format is a lot of work; it is much easier to resort to one of the existing TeX formats.
I'm currently trying to save a stress vs. strain curve using Octave. On this plot, I want to include text showing the equation for calculating engineering stress and engineering strain. Both of these require greek letters (\sigma and \epsilon respectively) as well as subscripts for the formulae.
Currently, using print with -deps, -dpng, or any other device, it creates a file, however the greek letters appear as the words "sigma" and "epsilon", and wherever I have a subscript, such as 0, it just appears as "_0". This looks very unprofessional.
Since I'm generating some 25 graphs, I don't want to have to go through and do a screenshot for each one. Does octave support saving the generated figure as displayed? I intend to use the generated files in a LaTeX document later (preferably as png so I can email them separately too).
I've also tried changing the "graphics_toolkit" option between fltk and gnuplot however it doesn't seem to help.
Attached to this post is a screenshot of the desired results and the actual results.
I am currently "not allowed" to post images, so I'll link them:
http://i.imgur.com/Tjt5Ecn.png (screenshot, desired result) and http://i.imgur.com/SP3hekd.png (directly saved, actual result)
Does anyone know a good way to print a figure from Octave which includes greek characters and subscripts in the titles?
Since you plan to use your graph in a Latex document, generating the graphs with -depslatex and converting them to pdf is a good idea . (Results look slightly better than direct -dpdflatex).
With -depslatex, you can include Latex code in your figures that will be written to a separate tex file.
Note that you need to use double backslashes \\ to export a single backslash.
graphics_toolkit("gnuplot");
...
legend("$\\varepsilon$");
print(sprintf("graph%s_%d.eps", name, type), '-depslatex', '-S200,270', '-F:9');
system(sprintf("epstopdf graph%s_%d.eps", name, type));
On the Latex side, you then \input the tex file generated by Octave. On the plus side, since you need 25 graphs, you can automatize this process on both sides Octave and Latex.
\newcommand{\mygraph}[1]{%
\graphicspath{{./figures/}}
\resizebox{0.495\linewidth}{!}{\relscale{1.0}\small%
\input{./figures/#1.tex}
}%
}
\mygraph{graph1_1}
Here, a Latex command \mygraph is defined to scale and include a figure located in a subfolder.
(I am using Octave 4.0.0 with gnuplot 4.4 on Ubuntu 12)
When I write math in LaTeX I often need to perform simple arithmetic on numbers in my LaTeX source, like 515.1544 + 454 = ???.
I usually copy-paste the LaTeX code into Google to get the result, but I still have to manually change the syntax, e.g.
\frac{154,7}{25} - (289 - \frac{1337}{42})
must be changed to
154,7/25 - (289 - 1337/42)
It seems trivial to write a program to do this for the most commonly used operations.
Is there a calculator which understand this syntax?
EDIT:
I know that doing this perfectly is impossible (because of the halting problem). Doing it for the simple cases I need is trivial. \frac, \cdot, \sqrt and a few other tags would do the trick. The program could just return an error for cases it does not understand.
WolframAlpha can take input in TeX form.
http://blog.wolframalpha.com/2010/09/30/talk-to-wolframalpha-in-tex/
The LaTeXCalc project is designed to do just that. It will read a TeX file and do the computations. For more information check out the home page at http://latexcalc.sourceforge.net/
The calc package allows you to do some calculations in source, but only within commands like \setcounter and \addtolength. As far as I can tell, this is not what you want.
If you already use sage, then the sagetex package is pretty awesome (if not, it's overkill). It allows you get nicely formatted output from input like this:
The square of
$\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}$
is \sage{matrix([[1, 2], [3,4]])^2}.
The prime factorization of the current page number is \sage{factor(\thepage)}
As Andy says, the answer is yes there is a calculator that can understand most latex formulas: Emacs.
Try the following steps (assuming vanilla emacs):
Open emacs
Open your .tex file (or activate latex-mode)
position the point somewhere between the two $$ or e.g. inside the begin/end environment of the formula (or even matrix).
use calc embedded mode for maximum awesomeness
So with point in the formula you gave above:
$\frac{154,7}{25} - (289 - \frac{1337}{42})$
press C-x * d to duplicate the formula in the line below and enter calc-embedded mode which should already have activated a latex variant of calc for you. Your buffer now looks like this:
$\frac{154,7}{25} - (289 - \frac{1337}{42})$
$\frac{-37651}{150}$`
Note that the fraction as already been transformed as far as possible. Doing the same again (C-x * d) and pressing c f to convert the fractional into a floating point number yields the following buffer:
$\frac{154,7}{25} - (289 - \frac{1337}{42})$
$\frac{-37651}{150}$
$-251.006666667$
I used C-x * d to duplicate the formula and then enter embedded mode in order to have the intermediate values, however there is also C-x * e which avoids the duplication and simply enters embedded mode for the current formula.
If you are interested you should really have a look at the info page for Emacs Calc - Embedded Mode. And in general the help for the Gnu Emaca Calculator together with the awesome interactive tutorial.
You can run an R function called Sweave on a (mostly TeX with some R) file that can replace R expressions with their results in Tex.
A tutorial can be found here: http://www.scribd.com/doc/6451985/Learning-to-Sweave-in-APA-Style
My calculator can do that. To get the formatted output, double-click the result formula and press ctrl+c to copy it.
It can do fairly advanced stuff too (differentiation, easy integrals (and not that easy ones)...).
https://calculator-algebra.org/
A sample computation:
https://calculator-algebra.org:8166/#%7B%22currentPage%22%3A%22calculator%22%2C%22calculatorInput%22%3A%22%5C%5Cfrac%7B1%2B2%7D%7B3%7D%3B%20d%2Fdx(arctan%20(2x%2B3))%22%2C%22monitoring%22%3A%22true%22%7D
There is a way to do what you want just not quite how you describe.
You can use the fp package (\usepackage[options]{fp}) the floating point package will do anything you want; solving equations, adding dividing and many more. Unfortunately it will not read the LaTeX math you instead have to do something a little different, the documentation is very poor so I'll give an example here.
for instance if you want to do (2x3)/5 you would type:
\FPmul\p{2}{3} % \p is the assignment of the operation 2x3
\FPupn\p{\p{} 7 round} % upn evaluates the assignment \p and rounds to 7dp
\FPdiv\q{\p}{5} % divides the assigned value p by 5 names result q
\FPupn\q{\q{} 4 round} % rounds the result to 4 decimal places and evaluates
$\frac{2\times3}{5}=\FPprint\q$ % This will print the result of the calculations in the math.
the FP commands are always ibvisible, only FPprint prints the result associated with it so your documents will not be messy, FP commands can be placed wherever you wish (not verb) as long as they are before the associated FPprint.
You could just paste it into symbolab which as a bonus has free step by step solutions. Also since symbolab uses mathquill it instantly formats your latex.
Considering that LaTeX itself is a Turing-complete markup language I strongly doubt you can build something like this that isn't built directly into LaTeX. Furthermore, LaTeX math matkup itself has next to no semantic meaning, it merely describes the visual appearance.
That being said, you can probably hack together something which recognizes a non-programmable subset of LaTeX math markup and spits out the result in the same way. If all you're interested in is simple arithmetics with fractions and integers (careful with decimal fractions, though, as they may appear as 3{,}141... in German texts :)) this shouldn't be too hard. But once you start with integrals, matrices, etc. I fear that LaTeX lacks expressiveness to accurately describe your intentions. It is a document preparation system, after all and thus not very suitable as input for computer algebra systems.
Side note: You can switch to Word which has—in its current version—a math markup language which is sufficiently LaTeX-like (by now it even supports LaTeX markup) and yet still Google-friendly for simpler terms:
With the free Microsoft Math add-in you can even let Word calculate expressions in-place:
There is none, because it is generally not possible.
LaTeX math mode markup is presentational markup and there are cases in which it does not provide enough information to calculate the expression.
That was one of the reasons MathML content markup was created and also why MathML is used in Mathematica. MathML actually is sort of two languages in one:
presentation markup
content markup
To accomplish what you are after you'll have to have MathML with comibned presentation and content markup (see MathML spec).
In my opinion your best bet is to use MathML (even if it is verbose) and convert to LaTeX when necessary. That said, I also like LaTeX syntax best and maybe what we need is a compact syntax for MathML (something similar in spirit to RelaxNG compact syntax).
For calculations with LaTeX you can use a CalcTeX package.
This package understand elements of LaTeX language and makes an calculations, for example your problem is avialble on
http://sg.bzip.pl/CalcTeX/examples/frac.tgz
or just please write
\noindent
For calculation please use following enviromentals
$515.1544 + 454$
or
\[ \frac{154.7}{25}-(289-\frac{1337}{42.})
\]
or
\begin{equation}
154.7/25-(289-1337/42.)
\end{equation}
For more info please visite project web site or contact author of this project.
For performing the math within your LaTeX itself, you might also look into the pgfmath package, which is more powerful and convenient than the calc package. You can find out how to use it from Part VI of The TikZ and PGF Packages Manual, which you can find here (version 2.10 currently): http://mirror.unl.edu/ctan/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf
Emacs calc-mode accepts latex-input. I use it daily. Press "d", followed by "L" to enter latex input mode. Press "'" to open a prompt where you can paste your tex.
Anyone saing it is not possible is wrong.
IIRC Mathematica can do it.
There is none, because it is generally not possible. LaTeX math mode
markup is presentational markup and there are cases in which it does
not provide enough information to calculate the expression.
You are right. LaTeX as it is does not provide enough info to make any calculations.Moreover, it does not represent any information to do it. But nobody prevents to wright in LaTeX format a text that contains such an information.
It is a difficult path, because you need to build a system of rules superimposed on what content ofthe text in Latex format needs to contain that it would be recognizable by your interpreter. And then convince the user that it is necessary to learn, etc. etc...
The easiest way to create a logical and intuitive calculator of mathematical expressions. And the expression is already possible to convert latex. It's almost like what you said. This is implemented in the program which I have pointed to. AnEasyCalc allows to type an expression as you type the plane text in any text editor. It checks, calculates and generate LateX string by its own then. Its very easy and rapid work. Just try and you will see that.
This is not exactly what you are asking for but it is a nice package
that you can include in a LaTeX document to do all kind of operations including arithmetic, calculus and even vectors and matrices:
The package name is "calculator"
http://mirror.unl.edu/ctan/macros/latex/contrib/calculator/calculator.pdf
The latex2sympy2 Python library can parse LaTeX math expressions.
from latex2sympy2 import latex2sympy
tex_str = r"""YOUR TEX MATH HERE"""
tex_str = r"\frac{9\pi}{\ln(12)}+22" # example TeX math
sympy_object = latex2sympy(tex_str)
evaluated_tex = float(sympy_object.evalf())
print(evaluated_tex)
This Python 3 code evaluates 9𝜋/ln(12)+22 (in its LaTeX from above) to 33.37842899841745.
The snippet above only handles basic algebraic simplification (math expressions without variables). Since the library converts LaTeX math to SymPy objects, the above code can easily be tweaked and extended to handle much more complicated LaTeX math (including solving derivatives, integrals, etc...).
The latex2sympy2 library can be installed via the pip command: pip install --user latex2sympy2
<>
try the AnEasyCalc program. It allows to get the latex formula very easy:
http://steamandwater.od.ua/AnEasyCalc/
:)