inject different implementations by logged User Role - asp.net-mvc

public class TheController : Controller
{
IThe the;
public TheController( IThe the)
{
//when User.IsInRole("r1") The1 should be injected else r2
this.the = the;
}
}
public class The1 : IThe{}
public class The2 : IThe{}
//anybody knows a good way of doing this ?

IHandlerSelector is the way to go. See this post for an example of usage.
Alternatively if you prefer AutoFac-like experience you can use factory for that:
container.Register(Component.For<IThe>().UsingFactoryMethod(
c => HttpContext.Current.User.IsInRole("r1") ?
c.Resolve<IThe>("r1") :
c.Resolve<IThe>("r2"));
Or if you want to use specific IThe just in one context, you can use DynamicParameters:
container.Register(Component.For<TheFactory>().Lifestyle.Transient.DynamicParameters(
(c, d) => HttpContext.Current.User.IsInRole("r1") ?
d["the"] = c.Resolve<IThe>("r1") :
c.Resolve<IThe>("r2"));
However the most correct way of doing this is IHandlerSelector

The container-agnostic approach obviously employs an Abstract Factory:
public interface ITheFactory
{
IThe Create(IPrincipal user);
}
You can take a dependency on ITheFactory instead of IThe:
public class TheController : Controller
{
private readonly IThe the;
public TheController(ITheFactory theFactory)
{
if (theFactory == null)
{
throw new ArgumentNullException("theFactory");
}
this.the = theFactory.Create(this.User);
}
}
I can't really remember if this.User is populated at this time, but if it isn't, you can just keep a reference to the factory and lazily resolve your dependency the first time it's requested.
However, Controller.User is a bit special because it ought to be available as Thread.CurrentPrincipal as well. This means that in this special case you don't actually have to introduce an Abstract Factory. Instead, you can write a Decorator that performs the selection every time it's used:
public class UserSelectingThe : IThe
{
private readonly IThe the1;
private readonly IThe the2;
public UserSelectingThe(IThe the1, IThe the2)
{
if (the1 == null)
{
throw new ArgumentNullException("the1");
}
if (the2 == null)
{
throw new ArgumentNullException("the2");
}
this.the1 = the1;
this.the2 = the2;
}
// Assuming IThe defines the Foo method:
public Baz Foo(string bar)
{
if (Thread.CurrentPrincipal.IsInRole("r1"))
{
return this.the1.Foo(bar);
}
return this.the2.Foo(bar);
}
}
In this case, you would be able to use your original TheController class unchanged.

In Autofac:
var builder = new ContainerBuilder();
// Give the different implementations names
builder.RegisterType<The1>.Named<IThe>("r1");
builder.RegisterType<The2>.Named<IThe>("r2");
// Use a function for the default IThe
builder.Register(
c => HttpContext.Current.User.IsInRole("r1") ?
c.Resolve<IThe>("r1") :
c.Resolve<IThe>("r2"))
.As<IThe>()
.ExternallyOwned();
If you have a lot of roles, you can use a method instead of the inline expression, e.g.:
builder.Register(c => ChooseTheImplementation(c))
(BTW, The "ExternallyOwned" modifier tells the container that the result of the function is disposed elsewhere, e.g. via the concrete components. You can usually leave it out but it makes good documentation :))

Related

Bind registered name to component instance in structuremap

I am about to switch from Windsor to Structuremap for an existing project with ~100 registered components (mostly singletons).
All components inherit from a common base class that provides logging and health tracking and for this reason, contains a "Name" property used to identify component instances.
With Windsor, it was possible to set the component's Name property to the name that was used to register the component in the IOC container (We used a Facility for this).
My question: Is something like this possible with Structuremap?
(I dream of a call to c.For<IFoo>.Use<Bar>.Named("Doe") that magically results in instanceOfBar.Name = "Doe" somewhere.)
Here is what I tried:
using System;
using StructureMap;
using StructureMap.Interceptors;
using System.Diagnostics;
namespace ConsoleApplication1
{
interface IServiceA { }
interface IServiceB { }
class Base
{
public string Name { get; set; }
}
class ComponentA : Base, IServiceA { }
class ComponentB : Base, IServiceB
{
public ComponentB(IServiceA serviceA)
{
this.ServiceA = serviceA;
}
public IServiceA ServiceA { get; private set; }
}
class SetNameInterceptor : TypeInterceptor
{
public bool MatchesType(Type type) { return true; }
public object Process(object target, IContext context)
{
// *** Any other way? This does not work...
string name = context.BuildStack.Current != null ? context.BuildStack.Current.Name : context.RequestedName;
((Base)target).Name = name;
return target;
}
}
class Program
{
static void Main(string[] args)
{
Container container = new Container(c =>
{
c.RegisterInterceptor(new SetNameInterceptor());
c.For<IServiceA>().Use<ComponentA>().Named("A");
c.For<IServiceB>().Use<ComponentB>().Named("B");
});
var b = container.GetInstance<IServiceB>();
// both Fail:
Debug.Assert(((ComponentB)b).Name == "B");
Debug.Assert(((ComponentA)((ComponentB)b).ServiceA).Name == "A");
}
}
}
The above obviously does not work, I tried several variations but had no luck. The registered name of the target object does not seem to be consistently reachable via IContext.
My second best approach would be to define a new "NamedComponent(...)" extension method that resolves to Named(name).WithProperty(x => x.Name).EqualTo(name), but I wonder if this can be avoided to keep component registration as "structuremap-like" as possible?
Am I missing something?
I've never used WithProperty before but if it works the way I'd expect it should do the trick for you.
I think I would favor using EnrichWith though. Something like:
c.For<IFoo>().Use<Foo>().Named(name).EnrichWith(f => f.Name = name);
EnrichWith is a bit more explicit about what it's doing IMO, and lets you call any code on your instance before returning it to the caller. I like that this lets you do a straightforward assignment as well.
There is also a more complex handler you can use with EnrichWith that gives access to the context of the request - this would allow you to do something like this:
c.For<IFoo>().Use<Foo>().Named(name)
.EnrichWith((c, i) => {
i.Name = c.RequestedName;
return i;
});
This may be overkill for your situation but the contextual awareness can be pretty useful.

Passing in the type of the declaring class for NLog using Autofac

Following on from this question I would like autofac to inject the type of the declaring object into the constructor of my NLog service, so that it can correctly log which type is logging entries.
My NLogService class looks like this...
public class NLogService : ILogService
{
private readonly Logger _logger;
public NLogService(Type t)
{
var consumerType = t.DeclaringType.FullName;
_logger = LogManager.GetLogger(consumerType);
}
However it fails on app startup because it obviously cannot work out what to inject into the constructor of the NLogService with the following error...
None of the constructors found with
'Public binding flags' on type
'MyProduct.Domain.Services.Logging.NLogService'
can be invoked with the available
services and parameters: Cannot
resolve parameter 'System.Type t' of
constructor 'Void .ctor(System.Type)'.
So, my question is - how do i instruct autofac to inject the type of the calling class?
I tried this...
public NLogService(Type t)
{
var method = MethodBase.GetCurrentMethod();
Type consumingType = method.DeclaringType;
var consumerType = consumingType.FullName;
var consumerType = t.DeclaringType.FullName;
_logger = LogManager.GetLogger(consumerType);
}
But i just end up with MyProduct.Domain.Services.Logging.NLogService
What i want is the type of the class that is doing the actual logging.
i have already tried this suggestion and it didnt work for me either.
Could make your NLogService generic, i.e. NLogService<T> and use Autofac's open generics support?
Then you could do this:
public class NLogService<T> : ILogger<T>
{
private readonly Logger _logger;
public NLogService()
{
_logger = LogManager.GetLogger(typeof(T).FullName);
}
}
There is no real good way to do this with Autofac, because does not have support for 'context based injection' (which is what you are trying to do). There is a workaround, but it aint pretty...
What you can do is revert to property injection and define a base class or interface for that ILogService property. For instance, you can define the following interface:
public interface ILoggerContainer
{
public ILogService Logger { get; set; }
}
Now you can implement this interface on all types that need a logger:
public class Consumer : IConsumer, ILoggerContainer
{
public ILogService Logger { get; set; }
}
With this in place you can configure Autofac as follows:
builder.RegisterType<ILoggerContainer>()
.OnActivating(e =>
{
var type = typeof(LogService<>)
.MakeGenericType(e.Instance.GetType());
e.Instance.Logger = e.Context.Resolve(type);
});
Another workaround, that you may find cleaner is to inject an ILogger<T> with the same type as the type of the parent type:
public class Consumer : IConsumer
{
public Consumer(ILogger<Consumer> logger) { }
}
This makes the configuration much easier and prevents you from having to have a base class. Which one is most appropriate is up to you.
As I said, these are workarounds, but to be honest, you might need to reconsider your logging strategy in your application. Perhaps you are logging at too many places. In the applications I write there is hardly ever a need to log, and when I do, I write an logging message that is expressive enough so that there is no need to communicate the type that triggered the event. And when you log exception, you will always have a complete stack trace (and exception logging should almost only happen in the outer layer of your application and not within services anyway).
The following technique works well in our experience:
Create an attribute like below, which can be applied at class level or at the injection site:
[AttributeUsage(AttributeTargets.Parameter | AttributeTargets.Class)]
public class LoggerAttribute : Attribute
{
public readonly string Name;
public LoggerAttribute(string name)
{
Name = name;
}
}
Create an Autofac module that you register with the ContainerBuilder:
public class LogInjectionModule : Module
{
protected override void AttachToComponentRegistration(IComponentRegistry registry, IComponentRegistration registration)
{
registration.Preparing += OnComponentPreparing;
}
static void OnComponentPreparing(object sender, PreparingEventArgs e)
{
var typePreparing = e.Component.Activator.LimitType;
// By default, the name supplied to the logging instance is the name of the type in which it is being injected into.
string loggerName = typePreparing.FullName;
//If there is a class-level logger attribute, then promote its supplied name value instead as the logger name to use.
var loggerAttribute = (LoggerAttribute)typePreparing.GetCustomAttributes(typeof(LoggerAttribute), true).FirstOrDefault();
if (loggerAttribute != null)
{
loggerName = loggerAttribute.Name;
}
e.Parameters = e.Parameters.Union(new Parameter[]
{
new ResolvedParameter(
(p, i) => p.ParameterType == typeof (Logger),
(p, i) =>
{
// If the parameter being injected has its own logger attribute, then promote its name value instead as the logger name to use.
loggerAttribute = (LoggerAttribute)
p.GetCustomAttributes(typeof(LoggerAttribute),true).FirstOrDefault();
if (loggerAttribute != null)
{
loggerName = loggerAttribute.Name;
}
// Return a new Logger instance for injection, parameterised with the most appropriate name which we have determined above.
return LogManager.GetLogger(loggerName);
}),
// Always make an unamed instance of Logger available for use in delegate-based registration e.g.: Register((c,p) => new Foo(p.TypedAs<Logger>())
new TypedParameter(typeof(Logger), LogManager.GetLogger(loggerName))
});
}
}
You can now inject a named Logger in any one of these ways depending on individual scenarios:
By default, the injected logger name will be given the full type name of the class it is injected into:
public class Foo
{
public Foo(Logger logger)
{
}
}
Use a constructor parameter [Logger] attribute to override the logger name:
public class Foo
{
public Foo([Logger("Meaningful Name")]Logger logger)
{
}
}
Use a class-level [Logger] attribute to set the same logger name override for all constructor overloads:
[Logger("Meaningful Name")]
public class Foo
{
public Foo(Logger logger, int something)
{
}
public Foo(Logger logger, int something, DateTime somethingElse)
{
}
}
Use constructor parameter [Logger] attributes on each constructor overload to set different logger names depending on the context of how you were constructed:
public class Foo
{
public Foo(Logger("Meaningful Name")]Logger logger, int something)
{
}
public Foo(Logger("Different Name")]Logger logger, int something, DateTime somethingElse)
{
}
}
IMPORTANT NOTE: If you register types to be resolved with logger constructor injection using Autofac's delegate registration, you MUST use the two parameter overload like so: Register((c,p) => new Foo(p.TypedAs<Logger>()).
Hope this helps!
It is possible to do this without generics.
However, please note that in Autofac 6.x, the resolution process has changed to use a resolve pipeline. This doesn't matter for most scenarios, but it does when you want to use the lifetime events like OnPreparing, etc. Most of the answers here on SO around overriding the Preparing event are very old and are now outdated. You can't override Preparing directly anymore.
There is an example on the Autofac documentation site doing this for log4net, and it works with NLog with only minor changes. Here is the basic idea:
public class Log4NetMiddleware : IResolveMiddleware
{
public PipelinePhase Phase => PipelinePhase.ParameterSelection;
public void Execute(ResolveRequestContext context, Action<ResolveRequestContext> next)
{
// Add our parameters.
context.ChangeParameters(context.Parameters.Union(
new[]
{
new ResolvedParameter(
(p, i) => p.ParameterType == typeof(ILog),
(p, i) => LogManager.GetLogger(p.Member.DeclaringType)
),
}));
// Continue the resolve.
next(context);
// Has an instance been activated?
if (context.NewInstanceActivated)
{
var instanceType = context.Instance.GetType();
// Get all the injectable properties to set.
// If you wanted to ensure the properties were only UNSET properties,
// here's where you'd do it.
var properties = instanceType
.GetProperties(BindingFlags.Public | BindingFlags.Instance)
.Where(p => p.PropertyType == typeof(ILog) && p.CanWrite && p.GetIndexParameters().Length == 0);
// Set the properties located.
foreach (var propToSet in properties)
{
propToSet.SetValue(context.Instance, LogManager.GetLogger(instanceType), null);
}
}
}
}
Please also note that you have to understand how middleware works in Autofac. The documentation is a good place to start.

How to pass param to ctor of instance that is created by ObjectFactory

I using StructureMap to create instances of ModuleData
I have many classes that inherit from ModuleData(class A,B,C...) and each of them get Config1 or Config2 in coustructor
In Registry(located in file1.cs) I scan all types of ModuleData.
In Get(lacated in file2.cs) I get the instance.
I want that when ObjectFactory creates Config1/Config2 while creating instance of ModuleData it will pass "param" to Config1/Config2 constructors.
How I can configure structuremap to do this?
P.S. Registry & Get methods are located in different files!!!
Thank you
public class Config1
{
Config1(string param)
{
}
}
public class Config2
{
Config2(string param)
{
}
}
//.....//
public class A : ModuleData
{
A(Config1 c)
{
}
}
public class B : ModuleData
{
A(Config2 c)
{
}
}
//....//
//located in file1.cs
public Registry()
{
Scan(x =>
{
x.TheCallingAssembly();
x.AddAllTypesOf<ModuleData>();
});
ObjectFactory.Initialize(x =>
{
x.For<Config1>().Use<Config1>();
x.For<Config2>().Use<Config2>();
});
}
//....//
//located in file2.cs
public ModuleData Get(object o)
{
var module = o as PageModule;
var t = Type.GetType(string.Format("{0}.{1},{2}", Settings.Namespace, module.Name, Settings.Assembly));
return ObjectFactory.With("param").EqualTo(module.Parameters).GetInstance(t) as ModuleData;
}
I can't think of a good way to do what you want, I think its a bit of a design problem... I think you would have to explain a bit more about why you need to do this for me to help you.
What is a page module? Why is your config objects dependent on it?
Based on your comment, I think what you need is a factory object that creates ModuleData objects for you. Since they are objects it does not make much sense to get them from the container. Think about using a data access technology like Entity Framework, it would not make sense to get those objects from the container. From what I can tell, this is a similar case.

How to use methods in ObjectContext class, if I use IObjectSet<T> for unit test?

I am using EF4 with POCO and trying to make it testable architecture.
So I create IObjectContext interface as follow :
public interface IObjectContext
{
IObjectSet<Employee> Employees { get; }
IObjectSet<Team> Teams { get; }
void Commit();
}
Then I changed type of properties to IObjectSet in my real ObjectContext class as follow :
public partial class HRManagementEntities : ObjectContext, IUnitOfWork
{
// skip some codes here...........
public IObjectSet<Employee> Employees
{
get { return _employees ?? (_employees = CreateObjectSet<Employee>("Employees"));
}
private IObjectSet<Employee> _employees;
public IObjectSet<Team> Teams
{
get { return _teams ?? (_teams = CreateObjectSet<Team>("Teams")); }
}
private IObjectSet<Team> _teams;
public void Commit()
{
SaveChanges();
}
}
In my service layer, consume EF like this :
public class Service
{
private IObjectContext ctx;
public HRService(IObjectContext ctx)
{
this.ctx = ctx;
}
public List<Team> GetAllTeams()
{
return ctx.Teams.ToList();
}
}
Here is my problem, How to call methods in ObjectContext for example, ApplyCurrentValues(), ExecuteStoreCommand(), and so on... ?
Do I need to implement those methods in the IObjectContext to use?
EDIT
As RPM's advice, I created following extension method for ApplyCurrentValues() method, another methods could be extended in same way.
public static T UpdateModel<T>(this IObjectSet<T> iObjectSet, T currentEntity) where T : class
{
ObjectSet<T> objectSet = iObjectSet as ObjectSet<T>;
if (objectSet == null || currentEntity == null)
throw new ArgumentNullException();
return objectSet.ApplyCurrentValues(currentEntity);
}
You need to create extension methods for the methods you need, and cast the IObjectSet to ObjectSet.
For instance, if you need to do .Include (eager loading), use this extension method:
public static IQueryable<TSource> Include<TSource>(this IQueryable<TSource> source, string path)
{
var objectQuery = source as ObjectQuery<TSource>;
if (objectQuery != null)
{
objectQuery.Include(path);
}
return source;
}
You could probably do the same thing for IObjectContext, but not sure why you are even mocking this out. You should not expose the OC to outside the repository, only the repository should know about the OC.
In your example, your service is calling ctx.Teams on the entities/repository.
IMO your service should be calling ctx.Find, which would be strongly-typed (via generics) to the Teams object context. (IRepository)
A common trap is to over-mock things. Don't mock everything just for the sake of it, mock the functionality which you require for unit testing.
If you want to abstract out the Object Context then use the Unit of Work pattern.

How do I handle classes with static methods with Ninject?

How do I handle classes with static methods with Ninject?
That is, in C# one can not have static methods in an interface, and Ninject works on the basis of using interfaces?
My use case is a class that I would like it to have a static method to create an
unpopulated instance of itself.
EDIT 1
Just to add an example in the TopologyImp class, in the GetRootNodes() method, how would I create some iNode classes to return? Would I construct these with normal code practice or would I somehow use Ninject? But if I use the container to create then haven't I given this library knowledge of the IOC then?
public interface ITopology
{
List<INode> GetRootNodes();
}
public class TopologyImp : ITopology
{
public List<INode> GetRootNodes()
{
List<INode> result = new List<INode>();
// Need code here to create some instances, but how to without knowledge of the container?
// e.g. want to create a few INode instances and add them to the list and then return the list
}
}
public interface INode
{
// Parameters
long Id { get; set; }
string Name { get; set; }
}
class NodeImp : INode
{
public long Id
{
get { throw new NotImplementedException(); }
set { throw new NotImplementedException(); }
}
public string Name
{
get { throw new NotImplementedException(); }
set { throw new NotImplementedException(); }
}
}
// Just background to highlight the fact I'm using Ninject fine to inject ITopology
public partial class Form1 : Form
{
private ITopology _top;
public Form1()
{
IKernel kernal = new StandardKernel(new TopologyModule());
_top = kernal.Get<ITopology>();
InitializeComponent();
}
}
If you're building a singleton or something of that nature and trying to inject dependencies, typically you instead write your code as a normal class, without trying to put in lots of (probably incorrect) code managing the singleton and instead register the object InSingletonScope (v2 - you didnt mention your Ninject version). Each time you do that, you have one less class that doesnt surface its dependencies.
If you're feeling especially bloody-minded and are certain that you want to go against that general flow, the main tools Ninject gives you is Kernel.Inject, which one can use after you (or someone else) has newd up an instance to inject the dependencies. But then to locate one's Kernelm you're typically going to be using a Service Locator, which is likely to cause as much of a mess as it is likely to solve.
EDIT: Thanks for following up - I see what you're after. Here's a hacky way to approximate the autofac automatic factory mechanism :-
/// <summary>
/// Ugly example of a not-very-automatic factory in Ninject
/// </summary>
class AutomaticFactoriesInNinject
{
class Node
{
}
class NodeFactory
{
public NodeFactory( Func<Node> createNode )
{
_createNode = createNode;
}
Func<Node> _createNode;
public Node GenerateTree()
{
return _createNode();
}
}
internal class Module : NinjectModule
{
public override void Load()
{
Bind<Func<Node>>().ToMethod( context => () => Kernel.Get<Node>() );
}
}
[Fact]
public void CanGenerate()
{
var kernel = new StandardKernel( new Module() );
var result = kernel.Get<NodeFactory>().GenerateTree();
Assert.IsType<Node>( result );
}
}
The ToMethod stuff is a specific application of the ToProvider pattern -- here's how you'd do the same thing via that route:-
...
class NodeProvider : IProvider
{
public Type Type
{
get { return typeof(Node); }
}
public object Create( IContext context )
{
return context.Kernel.Get<Node>();
}
}
internal class Module : NinjectModule
{
public override void Load()
{
Bind<Func<Node>>().ToProvider<NodeProvider>();
}
}
...
I have not thought this through though and am not recommending this as A Good Idea - there may be far better ways of structuring something like this. #Mark Seemann? :P
I believe Unity and MEF also support things in this direction (keywords: automatic factory, Func)
EDIT 2: Shorter syntax if you're willing to use container-specific attributes and drop to property injection (even if Ninject allows you to override the specific attributes, I much prefer constructor injection):
class NodeFactory
{
[Inject]
public Func<Node> NodeFactory { private get; set; }
public Node GenerateTree()
{
return NodeFactory();
}
}
EDIT 3: You also need to be aware of this Ninject Module by #Remo Gloor which is slated to be in the 2.4 release
EDIT 4: Also overlapping, but not directly relevant is the fact that in Ninject, you can request an IKernel in your ctor/properties and have that injected (but that doesn't work directly in a static method).

Resources