I am trying to learn F# so I paid a visit to Project Euler and I am currently working on Problem 3.
The prime factors of 13195 are 5, 7,
13 and 29.
What is the largest prime
factor of the number 600851475143?
Some things to consider:
My first priority is to learn good functional habits.
My second priority is I would like it to be fast and efficient.
Within the following code I have marked the section this question is regarding.
let isPrime(n:int64) =
let rec check(i:int64) =
i > n / 2L or (n % i <> 0L && check(i + 1L))
check(2L)
let greatestPrimeFactor(n:int64) =
let nextPrime(prime:int64):int64 =
seq { for i = prime + 1L to System.Int64.MaxValue do if isPrime(i) then yield i }
|> Seq.skipWhile(fun v -> n % v <> 0L)
|> Seq.hd
let rec findNextPrimeFactor(number:int64, prime:int64):int64 =
if number = 1L then prime else
//************* No variable
(fun p -> findNextPrimeFactor(number / p, p))(nextPrime(prime))
//*************
//************* Variable
let p = nextPrime(prime)
findNextPrimeFactor(number / p, p)
//*************
findNextPrimeFactor(n, 2L)
Update
Based off some of the feedback I have refactored the code to be 10 times faster.
module Problem3
module private Internal =
let execute(number:int64):int64 =
let rec isPrime(value:int64, current:int64) =
current > value / 2L or (value % current <> 0L && isPrime(value, current + 1L))
let rec nextPrime(prime:int64):int64 =
if number % prime = 0L && isPrime(prime, 2L) then prime else nextPrime(prime + 1L)
let rec greatestPrimeFactor(current:int64, prime:int64):int64 =
if current = 1L then prime else nextPrime(prime + 1L) |> fun p -> greatestPrimeFactor(current / p, p)
greatestPrimeFactor(number, 2L)
let execute() = Internal.execute(600851475143L)
Update
I would like to thank everyone for there advice. This latest version is a compilation of all the advice I received.
module Problem3
module private Internal =
let largestPrimeFactor number =
let rec isPrime value current =
current > value / 2L || (value % current <> 0L && isPrime value (current + 1L))
let rec nextPrime value =
if number % value = 0L && isPrime value 2L then value else nextPrime (value + 1L)
let rec find current prime =
match current / prime with
| 1L -> prime
| current -> nextPrime (prime + 1L) |> find current
find number (nextPrime 2L)
let execute() = Internal.largestPrimeFactor 600851475143L
Functional programming becomes easier and more automatic with practice, so don't sweat it if you don't get it absolutely right on the first try.
With that in mind, let's take your sample code:
let rec findNextPrimeFactor(number:int64, prime:int64):int64 =
if number = 1L then prime else
//************* No variable
(fun p -> findNextPrimeFactor(number / p, p))(nextPrime(prime))
//*************
//************* Variable
let p = nextPrime(prime)
findNextPrimeFactor(number / p, p)
//*************
Your no variable version is just weird, don't use it. I like your version with the explicit let binding.
Another way to write it would be:
nextPrime(prime) |> fun p -> findNextPrimeFactor(number / p, p)
Its ok and occasionally useful to write it like this, but still comes across as a little weird. Most of the time, we use |> to curry values without needing to name our variables (in "pointfree" style). Try to anticipate how your function will be used, and if possible, re-write it so you can use it with the pipe operator without explicit declared variables. For example:
let rec findNextPrimeFactor number prime =
match number / prime with
| 1L -> prime
| number' -> nextPrime(prime) |> findNextPrimeFactor number'
No more named args :)
Ok, now that we have that out of the way, let's look at your isPrime function:
let isPrime(n:int64) =
let rec check(i:int64) =
i > n / 2L or (n % i <> 0L && check(i + 1L))
check(2L)
You've probably heard to use recursion instead of loops, and that much is right. But, wherever possible, you should abstract away recursion with folds, maps, or higher order functions. Two reasons for this:
its a little more readable, and
improperly written recursion will result in a stack overflow. For example, your function is not tail recursive, so it'll blow up on large values of n.
I'd rewrite isPrime like this:
let isPrime n = seq { 2L .. n / 2L } |> Seq.exists (fun i -> n % i = 0L) |> not
Most of the time, if you can abstract away your explicit looping, then you're just applying transformations to your input sequence until you get your results:
let maxFactor n =
seq { 2L .. n - 1L } // test inputs
|> Seq.filter isPrime // primes
|> Seq.filter (fun x -> n % x = 0L) // factors
|> Seq.max // result
We don't even have intermediate variables in this version. Coolness!
My second priority is I would like it
to be fast and efficient.
Most of the time, F# is going to be pretty comparable with C# in terms of speed, or it's going to be "fast enough". If you find your code takes a long time to execute, it probably means you're using the wrong data structure or a bad algorithm. For a concrete example, read the comments on this question.
So, the code I've written is "elegant" in the sense that its concise, gives the correct results, and doesn't rely on any trickery. Unfortunately, its not very fast. For start:
it uses trial division to create a sequence of primes, when the Sieve of Eratosthenes would be much faster. [Edit: I wrote a somewhat naive version of this sieve which didn't work for numbers larger than Int32.MaxValue, so I've removed the code.]
read Wikipedia's article on the prime counting function, it'll give you pointers on calculating the first n primes as well as estimating the upper and lower bounds for the nth prime.
[Edit: I included some code with a somewhat naive implementation of a sieve of eratosthenes. It only works for inputs less than int32.MaxValue, so it probably isn't suitable for project euler.]
Concerning "good functional habit" or rather good practice I see three minor things. Using the yield in your sequence is a little harder to read than just filter. Unnecessary type annotations in a type inferred language leads to difficult refactoring and makes the code harder to read. Don't go overboard and try to remove every type annotation though if you're finding it difficult. Lastly making a lambda function which only takes a value to use as a temp variable reduces readability.
As far as personal style goes I prefer more spaces and only using tupled arguments when the data makes sense being grouped together.
I'd write your original code like this.
let isPrime n =
let rec check i =
i > n / 2L || (n % i <> 0L && check (i + 1L))
check 2L
let greatestPrimeFactor n =
let nextPrime prime =
seq {prime + 1L .. System.Int64.MaxValue}
|> Seq.filter isPrime
|> Seq.skipWhile (fun v -> n % v <> 0L)
|> Seq.head
let rec findNextPrimeFactor number prime =
if number = 1L then
prime
else
let p = nextPrime(prime)
findNextPrimeFactor (number / p) p
findNextPrimeFactor n 2L
Your updated code is optimal for your approach. You would have to use a different algorithm like Yin Zhu answer to go faster. I wrote a test to check to see if F# makes the "check" function tail recursive and it does.
the variable p is actually a name binding, not a variable. Using name binding is not a bad style. And it is more readable. The lazy style of nextPrime is good, and it actually prime-test each number only once during the whole program.
My Solution
let problem3 =
let num = 600851475143L
let rec findMax (n:int64) (i:int64) =
if n=i || n<i then
n
elif n%i=0L then
findMax (n/i) i
else
findMax n (i+1L)
findMax num 2L
I basically divides num from 2, 3, 4.. and don't consider any prime numbers. Because if we divides all 2 from num, then we won't be able to divide it by 4,8, etc.
on this number, my solution is quicker:
> greatestPrimeFactor 600851475143L;;
Real: 00:00:01.110, CPU: 00:00:00.702, GC gen0: 1, gen1: 1, gen2: 0
val it : int64 = 6857L
>
Real: 00:00:00.001, CPU: 00:00:00.000, GC gen0: 0, gen1: 0, gen2: 0
val problem3 : int64 = 6857L
I think that the code with the temporary binding is significantly easier to read. It's pretty unusual to create an anonymous function and then immediately apply it to a value as you do in the other case. If you really want to avoid using a temporary value, I think that the most idiomatic way to do that in F# would be to use the (|>) operator to pipe the value into the anonymous function, but I still think that this isn't quite as readable.
Related
IE,
What am I doing wrong here? Does it have to to with lists, sequences and arrays and the way the limitations work?
So here is the setup: I'm trying to generate some primes. I see that there are a billion text files of a billion primes. The question isn't why...the question is how are the guys using python calculating all of the primes below 1,000,000 in milliseconds on this post...and what am I doing wrong with the following F# code?
let sieve_primes2 top_number =
let numbers = [ for i in 2 .. top_number do yield i ]
let sieve (n:int list) =
match n with
| [x] -> x,[]
| hd :: tl -> hd, List.choose(fun x -> if x%hd = 0 then None else Some(x)) tl
| _ -> failwith "Pernicious list error."
let rec sieve_prime (p:int list) (n:int list) =
match (sieve n) with
| i,[] -> i::p
| i,n' -> sieve_prime (i::p) n'
sieve_prime [1;0] numbers
With the timer on in FSI, I get 4.33 seconds worth of CPU for 100000... after that, it all just blows up.
Your sieve function is slow because you tried to filter out composite numbers up to top_number. With Sieve of Eratosthenes, you only need to do so until sqrt(top_number) and remaining numbers are inherently prime. Suppose we havetop_number = 1,000,000, your function does 78498 rounds of filtering (the number of primes until 1,000,000) while the original sieve only does so 168 times (the number of primes until 1,000).
You can avoid generating even numbers except 2 which cannot be prime from the beginning. Moreover, sieve and sieve_prime can be merged into a recursive function. And you could use lightweight List.filter instead of List.choose.
Incorporating above suggestions:
let sieve_primes top_number =
let numbers = [ yield 2
for i in 3..2..top_number -> i ]
let rec sieve ns =
match ns with
| [] -> []
| x::xs when x*x > top_number -> ns
| x::xs -> x::sieve (List.filter(fun y -> y%x <> 0) xs)
sieve numbers
In my machine, the updated version is very fast and it completes within 0.6s for top_number = 1,000,000.
Based on my code here: stackoverflow.com/a/8371684/124259
Gets the first 1 million primes in 22 milliseconds in fsi - a significant part is probably compiling the code at this point.
#time "on"
let limit = 1000000
//returns an array of all the primes up to limit
let table =
let table = Array.create limit true //use bools in the table to save on memory
let tlimit = int (sqrt (float limit)) //max test no for table, ints should be fine
let mutable curfactor = 1;
while curfactor < tlimit-2 do
curfactor <- curfactor+2
if table.[curfactor] then //simple optimisation
let mutable v = curfactor*2
while v < limit do
table.[v] <- false
v <- v + curfactor
let out = Array.create (100000) 0 //this needs to be greater than pi(limit)
let mutable idx = 1
out.[0]<-2
let mutable curx=1
while curx < limit-2 do
curx <- curx + 2
if table.[curx] then
out.[idx]<-curx
idx <- idx+1
out
There have been several good answers both as to general trial division algorithm using lists (#pad) and in choice of an array for a sieving data structure using the Sieve of Eratosthenes (SoE) (#John Palmer and #Jon Harrop). However, #pad's list algorithm isn't particularly fast and will "blow up" for larger sieving ranges and #John Palmer's array solution is somewhat more complex, uses more memory than necessary, and uses external mutable state so is not different than if the program were written in an imperative language such as C#.
EDIT_ADD: I've edited the below code (old code with line comments) modifying the sequence expression to avoid some function calls so as to reflect more of an "iterator style" and while it saved 20% of the speed it still doesn't come close to that of a true C# iterator which is about the same speed as the "roll your own enumerator" final F# code. I've modified the timing information below accordingly. END_EDIT
The following true SoE program only uses 64 KBytes of memory to sieve primes up to a million (due to only considering odd numbers and using the packed bit BitArray) and still is almost as fast as #John Palmer's program at about 40 milliseconds to sieve to one million on a i7 2700K (3.5 GHz), with only a few lines of code:
open System.Collections
let primesSoE top_number=
let BFLMT = int((top_number-3u)/2u) in let buf = BitArray(BFLMT+1,true)
let SQRTLMT = (int(sqrt (double top_number))-3)/2
let rec cullp i p = if i <= BFLMT then (buf.[i] <- false; cullp (i+p) p)
for i = 0 to SQRTLMT do if buf.[i] then let p = i+i+3 in cullp (p*(i+1)+i) p
seq { for i = -1 to BFLMT do if i<0 then yield 2u
elif buf.[i] then yield uint32(3+i+i) }
// seq { yield 2u; yield! seq { 0..BFLMT } |> Seq.filter (fun i->buf.[i])
// |> Seq.map (fun i->uint32 (i+i+3)) }
primesSOE 1000000u |> Seq.length;;
Almost all of the elapsed time is spent in the last two lines enumerating the found primes due to the inefficiency of the sequence run time library as well as the cost of enumerating itself at about 28 clock cycles per function call and return with about 16 function calls per iteration. This could be reduced to only a few function calls per iteration by rolling our own iterator, but the code is not as concise; note that in the following code there is no mutable state exposed other than the contents of the sieving array and the reference variable necessary for the iterator implementation using object expressions:
open System
open System.Collections
open System.Collections.Generic
let primesSoE top_number=
let BFLMT = int((top_number-3u)/2u) in let buf = BitArray(BFLMT+1,true)
let SQRTLMT = (int(sqrt (double top_number))-3)/2
let rec cullp i p = if i <= BFLMT then (buf.[i] <- false; cullp (i+p) p)
for i = 0 to SQRTLMT do if buf.[i] then let p = i+i+3 in cullp (p*(i+1)+i) p
let nmrtr() =
let i = ref -2
let rec nxti() = i:=!i+1;if !i<=BFLMT && not buf.[!i] then nxti() else !i<=BFLMT
let inline curr() = if !i<0 then (if !i= -1 then 2u else failwith "Enumeration not started!!!")
else let v = uint32 !i in v+v+3u
{ new IEnumerator<_> with
member this.Current = curr()
interface IEnumerator with
member this.Current = box (curr())
member this.MoveNext() = if !i< -1 then i:=!i+1;true else nxti()
member this.Reset() = failwith "IEnumerator.Reset() not implemented!!!"
interface IDisposable with
member this.Dispose() = () }
{ new IEnumerable<_> with
member this.GetEnumerator() = nmrtr()
interface IEnumerable with
member this.GetEnumerator() = nmrtr() :> IEnumerator }
primesSOE 1000000u |> Seq.length;;
The above code takes about 8.5 milliseconds to sieve the primes to a million on the same machine due to greatly reducing the number of function calls per iteration to about three from about 16. This is about the same speed as C# code written in the same style. It's too bad that F#'s iterator style as I used in the first example doesn't automatically generate the IEnumerable boiler plate code as C# iterators do, but I guess that is the intention of sequences - just that they are so damned inefficient as to speed performance due to being implemented as sequence computation expressions.
Now, less than half of the time is expended in enumerating the prime results for a much better use of CPU time.
What am I doing wrong here?
You've implemented a different algorithm that goes through each possible value and uses % to determine if it needs to be removed. What you're supposed to be doing is stepping through with a fixed increment removing multiples. That would be asymptotically.
You cannot step through lists efficiently because they don't support random access so use arrays.
I have a sequence of prime number divisors that I want to iterate over for each prime candidate. I use GetEnumerator() MoveNext() and Current. I can't reinitialize the enumerator to start from the beginning. I tried Reset(), which compiled, but gives a runtime error of not implemented.
I am using F# 2.0 Interactive build 4.0.40219.1
Any suggestions?
Regards,
Doug
To clarify the problem: For each prime candidate N I want to iterate thru the prime divisors sequence (up to approx sqrt N) and completely factor N or determine if it is prime. Using the GetEnumerator, MoveNext, Current approach works for the first prime candidate, but on the second prime candidate I want to iterate on my divisors sequence from the beginning. It appears that the only way to do this is to create a new iterator (which is awkward for a large number of prime candidates) or create a new prime sequence (which I don't want to do).
The suggestion of using something like "divisors in seqPrimes" appears to exhaust all divisors before stopping, but I want to stop as soon as a prime divisor divides the prime candidate.
If there is an error in my logic in the above statements, please let me know.
I investigated Seq.cache, and this worked for me. The resulting code follows:
// Recursive isprime function (modified from MSDN)
let isPrime n =
let rec check i =
i > n/2 || (n % i <> 0 && check (i + 2))
if n = 2 then true
elif (n%2) = 0 then false
else check 3
let seqPrimes = seq { for n in 2 .. 100000 do if isPrime n then yield n }
// Cache the sequence to avoid recomputing the sequence elements.
let cachedSeq = Seq.cache seqPrimes
// find the divisors of n (or determine prime) using the seqEnum enumerator
let rec testPrime n (seqEnum:System.Collections.Generic.IEnumerator<int>) =
if n = 1 then printfn "completely factored"
else
let nref = ref n
if seqEnum.MoveNext() then
let divisor = seqEnum.Current
//printfn "trial divisor %A" divisor
if divisor*divisor > n then printfn "prime %A" !nref
else
while ((!nref % divisor) = 0) do
printfn "divisor %A" divisor
nref := !nref / divisor
testPrime !nref seqEnum
// test
for x = 1000000 to 1000010 do
printfn "\ndivisors of %d = " x
let seqEnum = cachedSeq.GetEnumerator()
testPrime x seqEnum
seqEnum.Dispose() // not needed
If you mean that the cause of your attempt to reset the Enumerator is the high cost of regenerating your sequence of primes you may consider caching your sequence. This manner of using your sequence would be idiomatic to F#. To show you how to do this I refer you to the following snippet taken from this context:
let rec primes =
Seq.cache <| seq { yield 2; yield! Seq.unfold nextPrime 3 }
and nextPrime n =
if isPrime n then Some(n, n + 2) else nextPrime(n + 2)
and isPrime n =
if n >= 2 then
primes
|> Seq.tryFind (fun x -> n % x = 0 || x * x > n)
|> fun x -> x.Value * x.Value > n
else false
You may play with this snippet to see that the penalty of re-enumeration here gets negligible.
Talking of Reset() method of IEnumerator, I recall that it is not implemented in current F#, i.e. throws System.NotSupportedException. See MSDN reference for justification.
ADDITION:
In order to test it with the test you've suggested below:
for x in [1000000..1000010] do
printfn "\ndivisors of %d" x
primes
|> Seq.takeWhile ((>) (int(sqrt(float x))))
|> Seq.iter (fun n -> if x%n = 0 then printf "%d " n)
On my laptop test execution takes mere 3ms.
What is the most elegant way to implement dynamic programming algorithms that solve problems with overlapping subproblems? In imperative programming one would usually create an array indexed (at least in one dimension) by the size of the problem, and then the algorithm would start from the simplest problems and work towards more complicated once, using the results already computed.
The simplest example I can think of is computing the Nth Fibonacci number:
int Fibonacci(int N)
{
var F = new int[N+1];
F[0]=1;
F[1]=1;
for(int i=2; i<=N; i++)
{
F[i]=F[i-1]+F[i-2];
}
return F[N];
}
I know you can implement the same thing in F#, but I am looking for a nice functional solution (which is O(N) as well obviously).
One technique that is quite useful for dynamic programming is called memoization. For more details, see for example blog post by Don Syme or introduction by Matthew Podwysocki.
The idea is that you write (a naive) recursive function and then add cache that stores previous results. This lets you write the function in a usual functional style, but get the performance of algorithm implemented using dynamic programming.
For example, a naive (inefficient) function for calculating Fibonacci number looks like this:
let rec fibs n =
if n < 1 then 1 else
(fibs (n - 1)) + (fibs (n - 2))
This is inefficient, because when you call fibs 3, it will call fibs 1 three times (and many more times if you call, for example, fibs 6). The idea behind memoization is that we write a cache that stores the result of fib 1 and fib 2, and so on, so repeated calls will just pick the pre-calculated value from the cache.
A generic function that does the memoization can be written like this:
open System.Collections.Generic
let memoize(f) =
// Create (mutable) cache that is used for storing results of
// for function arguments that were already calculated.
let cache = new Dictionary<_, _>()
(fun x ->
// The returned function first performs a cache lookup
let succ, v = cache.TryGetValue(x)
if succ then v else
// If value was not found, calculate & cache it
let v = f(x)
cache.Add(x, v)
v)
To write more efficient Fibonacci function, we can now call memoize and give it the function that performs the calculation as an argument:
let rec fibs = memoize (fun n ->
if n < 1 then 1 else
(fibs (n - 1)) + (fibs (n - 2)))
Note that this is a recursive value - the body of the function calls the memoized fibs function.
Tomas's answer is a good general approach. In more specific circumstances, there may be other techniques that work well - for example, in your Fibonacci case you really only need a finite amount of state (the previous 2 numbers), not all of the previously calculated values. Therefore you can do something like this:
let fibs = Seq.unfold (fun (i,j) -> Some(i,(j,i+j))) (1,1)
let fib n = Seq.nth n fibs
You could also do this more directly (without using Seq.unfold):
let fib =
let rec loop i j = function
| 0 -> i
| n -> loop j (i+j) (n-1)
loop 1 1
let fibs =
(1I,1I)
|> Seq.unfold (fun (n0, n1) -> Some (n0 , (n1, n0 + n1)))
|> Seq.cache
Taking inspiration from Tomas' answer here, and in an attempt to resolve the warning in my comment on said answer, I propose the following updated solution.
open System.Collections.Generic
let fib n =
let cache = new Dictionary<_, _>()
let memoize f c =
let succ, v = cache.TryGetValue c
if succ then v else
let v = f c
cache.Add(c, v)
v
let rec inner n =
match n with
| 1
| 2 -> bigint n
| n ->
memoize inner (n - 1) + memoize inner (n - 2)
inner n
This solution internalizes the memoization, and while doing so, allows the definitions of fib and inner to be functions, instead of fib being a recursive object, which allows the compiler to (I think) properly reason about the viability of the function calls.
I also return a bigint instead of an int, as int quickly overflows with even a small of n.
Edit: I should mention, however, that this solution still runs into stack overflow exceptions with sufficiently large values of n.
I have this code written for a Project Euler problem in c++:
int sum = 0;
for(int i =0; i < 1000; i++)
{
//Check if multiple of 3 but not multiple of 5 to prevent duplicate
sum += i % 3 == 0 && i % 5 != 0 ? i: 0;
//check for all multiple of 5, including those of 3
sum += i % 5 == 0 ? i: 0;
}
cout << sum;
I'm trying to learn f# and rewriting this in f#. This is what I have so far:
open System
//function to calculate the multiples
let multiple3v5 num =
num
//function to calculate sum of list items
let rec SumList xs =
match xs with
| [] -> 0
| y::ys -> y + SumList ys
let sum = Array.map multiple3v5 [|1 .. 1000|]
What I have may be complete nonsense...so help please?
Your sumList function is a good start. It already iterates (recursively) over the entire list, so you don't need to wrap it in an additional Array.map. You just need to extend your sumList so that it adds the number only when it matches the specified condition.
Here is a solution to a simplified problem - add all numbers that are divisible by 3:
open System
let rec sumList xs =
match xs with
| [] -> 0 // If the list is empty, the sum is zero
| y::ys when y % 3 = 0 ->
// If the list starts with y that is divisible by 3, then we add 'y' to the
// sum that we get by recursively processing the rest of the list
y + sumList ys
| y::ys ->
// This will only execute when y is not divisible by 3, so we just
// recursively process the rest of the list and return
/// that (without adding current value)
sumList ys
// For testing, let's sum all numbers divisble by 3 between 1 and 10.
let sum = sumList [ 1 .. 10 ]
This is the basic way of writing the function using explicit recursion. In practice, the solution by jpalmer is how I'd solve it too, but it is useful to write a few recursive functions yourself if you're learning F#.
The accumulator parameter mentioned by sashang is a more advanced way to write this. You'll need to do that if you want to run the function on large inputs (which is likely the case in Euler problem). When using accumulator parameter, the function can be written using tail recursion, so it avoids stack overflow even when processing long lists.
The idea of a accumulator-based version is that the function takes additional parameter, which represents the sum calculated so far.
let rec sumList xs sumSoFar = ...
When you call it initially, you write sumList [ ... ] 0. The recursive calls will not call y + sumList xs, but will instead add y to the accumulator and then make the recursive call sumList xs (y + sumSoFar). This way, the F# compiler can do tail-call optimization and it will translate code to a loop (similar to the C++ version).
I'm not sure if translating from an imperative language solution is a good approach to developing a functional mindset as instrument (C++ in your case) had already defined an (imperative) approach to solution, so it's better sticking to original problem outlay.
Overall tasks from Project Euler are excellent for mastering many F# facilities. For example, you may use list comprehensions like in the snippet below
// multipleOf3Or5 function definition is left for your exercise
let sumOfMultiples n =
[ for x in 1 .. n do if multipleOf3Or5 x then yield x] |> List.sum
sumOfMultiples 999
or you can a bit generalize the solution suggested by #jpalmer by exploiting laziness:
Seq.initInfinite id
|> Seq.filter multipleOf3Or5
|> Seq.takeWhile ((>) 1000)
|> Seq.sum
or you may even use this opportunity to master active patterns:
let (|DivisibleBy|_) divisior num = if num % divisor = 0 the Some(num) else None
{1..999}
|> Seq.map (fun i ->
match i with | DivisibleBy 3 i -> i | DivisibleBy 5 i -> i | _ -> 0)
|> Seq.sum
All three variations above implement a common pattern of making a sequence of members with sought property and then folding it by calculating sum.
F# has many more functions than just map - this problem suggests using filter and sum, my approach would be something like
let valid n = Left as an exercise
let r =
[1..1000]
|> List.filter valid
|> List.sum
printfn "%i" r
I didn't want to do the whole problem, but filling in the missing function shouldn't be too hard
This is how you turn a loop with a counter into a recursive function. You do this by passing an accumulator parameter to the loop function that holds the current loop count.
For example:
let rec loop acc =
if acc = 10 then
printfn "endloop"
else
printfn "%d" acc
loop (acc + 1)
loop 0
This will stop when acc is 10.
I've been trying to work my way through Problem 27 of Project Euler, but this one seems to be stumping me. Firstly, the code is taking far too long to run (a couple of minutes maybe, on my machine, but more importantly, it's returning the wrong answer though I really can't spot anything wrong with the algorithm after looking through it for a while.
Here is my current code for the solution.
/// Checks number for primality.
let is_prime n =
[|1 .. 2 .. sqrt_int n|] |> Array.for_all (fun x -> n % x <> 0)
/// Memoizes a function.
let memoize f =
let cache = Dictionary<_, _>()
fun x ->
let found, res = cache.TryGetValue(x)
if found then
res
else
let res = f x
cache.[x] <- res
res
/// Problem 27
/// Find a quadratic formula that produces the maximum number of primes for consecutive values of n.
let problem27 n =
let is_prime_mem = memoize is_prime
let range = [|-(n - 1) .. n - 1|]
let natural_nums = Seq.init_infinite (fun i -> i)
range |> Array.map (fun a -> (range |> Array.map (fun b ->
let formula n = n * n + a * n + b
let num_conseq_primes = natural_nums |> Seq.map (fun n -> (n, formula n))
|> Seq.find (fun (n, f) -> not (is_prime_mem f)) |> fst
(a * b, num_conseq_primes)) |> Array.max_by snd)) |> Array.max_by snd |> fst
printn_any (problem27 1000)
Any tips on how to a) get this algorithm actually returning the right answer (I think I'm at least taking a workable approach) and b) improve the performance, as it clearly exceeds the "one minute rule" set out in the Project Euler FAQ. I'm a bit of a newbie to functional programming, so any advice on how I might consider the problem with a more functional solution in mind would also be appreciated.
Two remarks:
You may take advantage of the fact that b must be prime. This follows from the fact that the problem asks for the longest sequence of primes for n = 0, 1, 2, ...
So, formula(0) must be prime to begin with , but formula(0) = b, therefore, b must be prime.
I am not an F# programmer, but it seems to me that the code does not try n= 0 at all. This, of course, does not meet the problem's requirement that n must start from 0, therefore there are neglectable chances a correct answer could be produced.
Right, after a lot of checking that all the helper functions were doing what they should, I've finally reached a working (and reasonably efficient) solution.
Firstly, the is_prime function was completely wrong (thanks to Dimitre Novatchev for making me look at that). I'm not sure quite how I arrived at the function I posted in the original question, but I had assumed it was working since I'd used it in previous problems. (Most likely, I had just tweaked it and broken it since.) Anyway, the working version of this function (which crucially returns false for all integers less than 2) is this:
/// Checks number for primality.
let is_prime n =
if n < 2 then false
else [|2 .. sqrt_int n|] |> Array.for_all (fun x -> n % x <> 0)
The main function was changed to the following:
/// Problem 27
/// Find a quadratic formula that produces the maximum number of primes for consecutive values of n.
let problem27 n =
let is_prime_mem = memoize is_prime
let set_b = primes (int64 (n - 1)) |> List.to_array |> Array.map int
let set_a = [|-(n - 1) .. n - 1|]
let set_n = Seq.init_infinite (fun i -> i)
set_b |> Array.map (fun b -> (set_a |> Array.map (fun a ->
let formula n = n * n + a * n + b
let num_conseq_primes = set_n |> Seq.find (fun n -> not (is_prime_mem (formula n)))
(a * b, num_conseq_primes))
|> Array.max_by snd)) |> Array.max_by snd |> fst
The key here to increase speed was to only generate the set of primes between 1 and 1000 for the values of b (using the primes function, my implementation of the Sieve of Eratosthenes method). I also managed to make this code slightly more concise by eliminating the unnecessary Seq.map.
So, I'm pretty happy with the solution I have now (it takes just under a second), though of course any further suggestions would still be welcome...
You could speed up your "is_prime" function by using a probabilistic algorithm. One of the easiest quick algorithms for this is the Miller-Rabin algorithm.
to get rid of half your computations you could also make the array of possible a´s only contain odd numbers
my superfast python solution :P
flag = [0]*204
primes = []
def ifc(n): return flag[n>>6]&(1<<((n>>1)&31))
def isc(n): flag[n>>6]|=(1<<((n>>1)&31))
def sieve():
for i in xrange(3, 114, 2):
if ifc(i) == 0:
for j in xrange(i*i, 12996, i<<1): isc(j)
def store():
primes.append(2)
for i in xrange(3, 1000, 2):
if ifc(i) == 0: primes.append(i)
def isprime(n):
if n < 2: return 0
if n == 2: return 1
if n & 1 == 0: return 0
if ifc(n) == 0: return 1
return 0
def main():
sieve()
store()
mmax, ret = 0, 0
for b in primes:
for a in xrange(-999, 1000, 2):
n = 1
while isprime(n*n + a*n + b): n += 1
if n > mmax: mmax, ret = n, a * b
print ret
main()