Delphi - .bpl plugins for application - problem while loading > 1 plugin - delphi

I'm using TJvPluginManager to build simple application with ability to load .bpl plugins. I have common interfaces declaration in "uIntfs.pas" file, which is kind of SDK ;)
The problem is, that if I try to load more than one plugin, the app throws an error:
Cannot load package 'test2'. It
contains unit 'uIntfs,' which is also
contained in package 'test'
It's quite obvious that BOTH bpls contain that file, however I need to make it work ...
Please help!

Put your uIntfs.pas into another BPL, and have your plug-ins both reference that BPL.
You'll have to do that for every unit that's common to both plug-ins.

Related

(Delphi 7) I can't run my program executable on non-Delphi PCs?

I was making a Delphi application, and wanted to test it on another PC to see if everything was working properly. I compiled and built the executable file, of course and I transfered all of the files from the Project folder to the other PC. When I launched the .exe file on the PC, nothing would happen. I then ticked the "Build with runtime packages" option in Project Options:
This made the .exe go from around 300 KBs to around 30 KBs, but now, instead of being able to launch the application on another (non-Delphi) PC, that PC got an error saying it was missing various files required to open the .exe .
I sent the same thing to various friends and all reported the same problem.
My application is a rather simple lottery prototype application, so I don't understand why I'm having trouble opening it on other PCs. Are there other special options I need to enable for this to work?
When you use runtime packages, you need to distribute those packages. These are the .bpl files that your program links to. It will be a subset of the packages listed in the runtime packages edit box in your screenshot. You should just list the packages that you use.
The net result of doing this is that the total amount that you will have to distribute is much greater than a single monolithic executable. Because in a monolithic executable the unused code can be stripped. If you want to minimize the size of your program, and make life simple, do not use runtime packages.
It would be worthwhile reading Embarcadero's documentation:
Working with Packages and Components
Solve the first problem.
Using Runtime Packages will not solve the problem of your EXE not running on certain PC's. All it does is increase the complexity of deploying your application (as you have found).
Unless you need Runtime Packages for other, specific reasons, then you are far, far better off NOT using them, especially if you do not understand them (which based on the way you describe having discovered them does appear to be the case, if we're being honest).
Concentrate on finding out why your application does not run as a single, stand-alone EXE.
With all of the problems involving runtime packages your EXE is currently not even reaching the point of running your application code, and this may be where your original problem lies. Which means that once you have solved all the issues created by Runtime Packages, you will stil be left with an EXE which does not run. i.e. your original problem.
What does your application do when it starts ? Does it attempt to load files from any specific locations ? What are those locations ? What are the files ? Are you using any third party libraries which may expect DLL's to be present or other external files ? Are you trying to read or write settings to the registry or any external files (INI files etc).
What is the OS you are trying to run on ? This can be a very significant question for applications compiled with older Delphi versions. Have you tried configuring the EXE to run in Compatibility Mode for older versions of Windows ? (something that you do in Windows itself, not when compiling the EXE).
These are the questions you should be focussing on. Not runtime packages.
Gday,
A small tool that's been around for a while to help you with this is Dependency Walker. You can find it at http://www.dependencywalker.com. It's helped me out on more than one occasion. This will tell you what files (usually BPLs as stated in the other responses) need to be sent with your EXE.
Also look at NSIS to create a simple installer, and put your EXE and supporting BPLs and any other files in the same directory.

TFS Build custom activity requiring more assemblies than needed

I've just written the first version of a workflow activity that will run Resharper's Code Issues on the projects and parse the output to display the issues as build warnings and errors.
At first, I was going to just call Resharper's command line and parse the resulting xml manually. After fiddling with the dlls in Resharper's SDK (through disassembly mostly), I found a way to parse the results using it's own public classes, which I figured was a much more elegant and safe way to do this.
The first problem I have is that that nuget package is absolutely huge. There is 140mb of files in there, which to me is absurd for a single, unpartitioned package. There seems to be such heavy coupling between them that by using just a few model classes and the parser class, I have to drag a dozen or so of those dlls along, some of them which seemingly have nothing to do with the main dlls I need. This is not a show stopper though, I'm struggling with something else now:
In the end, I managed to track down the dependencies I needed to 41 assemblies (which is, again, insane, but alas). Initially, I tried removing everything and adding the missing references one by one, but this turned out to be unreliable, still missing some indirect references, even after compiling successfully. Then, I decided to code a small console application to find all referenced assemblies in the main Resharper assemblies I used, which gave me the 41 references I mentioned. This is the code I used to find every dependency.
Since these are custom activities we are talking about, I decided to create a unit test project to validate them. Using these 41 references only, everything works correctly.
When I added the activity to the build workflow though, and pointed the build controller to the source control folder containing the required assemblies, every time I schedule a build, the process fails stating that I need one extra dll from Resharper's SDK. For example, this is the first one it asks:
Could not load file or assembly 'AsyncBridge.Net35, PublicKeyToken=b3b1c0202c0d6a87' or one of its dependencies. The system cannot find the file specified. (type FileNotFoundException)
When I add this specific assembly to the TFS folder, I get another similar error for another dll, and this keeps going on and on.
What I wanted to know is how can I know exactly which assemblies a workflow XAML will need in order to run correctly? My custom activity dll has two specific CodeActivities and a XAML only activity that uses these two. This XAML acticity is what I'm directly using in the modified workflow template.
I see that besides the references in my project, the XAML activity also contains a TextExpression.ReferencesForImplementation section, with some assembly names. I've run my dependency finder program on those dependencies too, and the results are the same 41 assemblies already at the TFS folder.
Meanwhile I'll go with having the whole SDK into the custom assemblies folder, but I would really like to avoid this in the future since it has such an enormous amount of unneeded and big dlls in there.
First, we have request for our command line tool to support workflow activity and we decided to implement just plain MsBuild task which is universal and works in TFS too. Task and targets files are included in ReSharper CLT 8.2.
Second, if you still want to implement workflow activity it's pretty easy to do with new API in CLT, designed specially for custom processing of found issues - http://confluence.jetbrains.com/display/NETCOM/Custom+InspectCode+Issue+Logger.
And last, but not least, you do not need to put in VCS binaries of ReSharper SDK package.
Use NuGet's restore package functionality.
If you have any other questions I'll be glad to answer them.
A custom activity is being load and run by .NET CLR like any other .NET program. If the stack trace reports a missing file, then it's required by the CLR and you can't change this fact without refactoring your code.
Having an entire SDK references in the custom assembly folder doesn't make sense. I would prefer GAC deployment over huge binaries folder in the source control. Or maybe consider having these activities running an pre\post build scripts in MSBuild or PowerShell.

rtl90.bpl was not found, how do I include it in my Delphi 2005 win 32bit app?

The software that I have found myself supporting, from time to time fails to run on different PC's. Generally they are new Win7 installs.
The error message is "this application failed to start because rtl90.bpl was not found..."
To rectify the problem I have out PC Support copy the rtl90.bpl file to the users system32 directory, however i would like to ensure this error no longer occurs.
I have googled and found the followling link rtl90.bpl problem
My question is this:
The option to "Build with runtime packages" is already selected under the Project options for this program, and does not appear to make any difference to the users getting the problem.
Do I have to specifically Add the missing rtl90.bpl file to the project?
Please note that I know very little about delphi programming.
Since you are marked the option Build with runtime packages in your project, the final exe will require be deployed with some additional bpl files. To avoid that dependencies you must uncheck that option y build your project. Now your exe wil be bigger but without dependences.
That package is a runtime package containing the VCL. You presumably also need to deploy rtl90.bpl for the RTL and possibly some others. By enabling runtime packages you are promising to deploy those packages where the executable can find them.
You have 3 main options:
Deploy the packages to a location that is contained in the PATH variable. Usually this means modifying PATH. You should never write to the system directory. It is owned by the system and you should respect that.
Deploy the packages to the same directory as the executable file.
Disable runtime packages and therefore build a single self-contained executable. The RTL/VCL code will be statically linked into your executable.
Option 1 is poor in my view. Relying on the PATH variable and the ability to modify it is fragile. Option 2 works but seems rather pointless in comparison with option 3. You deploy more files and larger files when you choose 2, so why choose it.
In summary I recommend option 3. Statically link all RTL/VCL code into your executable.
The only situation where option 2 wins, in my view, is when you have multiple related executables that are all deployed to the same directory. In that situation sharing the RTL/VCL code can make sense.

In Delphi, should I add shared units to my projects, to a shared package, or neither?

This question is similar to this one, but not a duplicate because I'm asking about issues not discussed in that question.
I have a client-server project in Delphi 7 with the following directory structure:
\MyApp
\MyClientApp
\MyServerApp
\lib
There are 2 actual Delphi projects (.dpr), one each in the MyClientApp and MyServerApp folders.
The lib folder has .pas units that have common code to the client and server apps. What I'm wondering is if I should include those .pas files in the client and server projects? Or should I create a package in the lib folder which includes those units? Or should I just leave the .pas files sitting in the lib folder and not add them to any app/package?
What are the pros/cons of each approach? Which way is "best"? Is there any issue with having those units from the lib folder be included in more than one project?
Right now the units in the lib folder are not a part of any app/package. One disadvantage of this is that when I have my client app open in Delphi, for example, and I want to search in all files in the project for something, it doesn't also search in the units in the lib folder. I get around this by opening those units and doing a find in all open files, or using grep search (but I'd prefer a better solution).
I would also greatly prefer a solution where I will not have to go and open some separate package and recompile it when I make changes to those files in the lib folder (is this where I should use a project group?).
Sharing units between applications always carries the risk of incompatible changes done in one application that breaks the other. On the other hand, making copies of these units is even worse, so your approcach of moving them to their own subdirectory at least adds a psychological barrier to changing them without considering other programs.
As for adding them to the project files: I usually add some units which I frequently access (either for expanding or for reference) from the IDE to the project, and leave others out for the compiler to pick using the search path. I do that on per project basis, that means, some units may be part of several projects, why not?
Putting them into a package only makes sense, if you actually want to create a package based application, otherwise, why bother?
For more info on how I organize my projects and libraries, see http://www.dummzeuch.de/delphi/subversion/english.html
I dislike having files shared by projects. All too often, you'll be tempted to edit one of the shared files, and you'll either break something in the other project, or you'll forget that you have to rebuild the other project at all.
When the shared files are instead separated into their own library (package), then there's a little extra barrier to editing them. I consider that a good thing. It will be a light reminder that you're switching from project-specific code to shared code. You can use project groups to let you keep every together in a single IDE instance. arrange the library projects ahead of the executable projects. The "build all" command will build everything in order, starting with the first project.
Keep your DCU files separate from your PAS files. You can do this easily by setting the "DCU output directory" project option to send your package's units to some other location. Then put that destination directory on your other projects' "search path." They'll find the DCU, but they won't find the PAS file, and so no other project will accidentally recompile a unit that isn't really a member.
Having a separate package also discourages use of project-specific conditional defines. Those cause all sorts of trouble when you're sharing units between projects. Find a way to instead keep all project-specific options within the respective projects. A shared library shouldn't require project-specific modifications. If a library needs to act differently based on who's using it, then employ techniques like callback functions that the library user can set to modify the library's behavior.
I would need to have a very good reason to add shared code to a package. If you just have a few shared files stick them all in a directory called Shared. This should make it obvious the files are shared between projects.
Also use a good build tool to do automated builds so you will find out soon enough if you break something.
.bpl files are fine for components, but bring in serious added complexity for things like this, unless you have a huge amount of shared files.
I usually create a package with all shared unit, and just use the units.
If you do not explicitly mark "Build with run time packages" the package content (all used dcu's) will be linked to your project as any other unit.
I would only use runtime packages if you actually had two binaries that were supposed to run on the same physical machine and that shared some code. Keep in mind that runtime packages are mostly an all-or-nothing approach. Once you decide to use them you will also no longer be able to link the RTL and VCL units straight into your projects and will instead have to deploy those separately as well.
However, packages might still be a good solution to your problem when combined with project groups which is exactly what I'm doing. I hate having shared units included in multiple projects. Including the shared units in a package (but not compiling your actual projects with runtime packages) allows you to add that package to your project group so you (and the IDE!) will always have them easily accessible yet nicely separated from the project-specific code. Strictly speaking you don't even ever have to compile those packages. They can merely serve as an organisational unit in the project manager.
Note that for the Find in Files, you can also specify "in all files in project group"

Organizing the search path

We create via "Tools | Options | Environment Variables" Variables like that:
$(Sources) = D:\Sources\Delphi
$(OurLib) = $(Sources)\OurLib\Src
$(OurApp1) = $(Sources)\Applications\App1\3.x
$(ThirdParty) = $(Sources)\ThirdPartyComponents
We use these Variables in the project search path like that:
($OurApp1)\Src\Core;($OurApp1)\Src\GUI;($OurApp1)\Src\Plugins;$(ThirdParty)\JVCL
But this is broken (meanwhile fixed) since Delphi 2009 as these variables are not evaluated completely anymore (see QC #73276). So the files in the directories are not found by the compiler. A workaround: Use only complete directories in the environment variables.
We use this approach because on all developer machines and the build servers the files can be found and we only have to point $(Sources) to the right place.
We don't have anything in our global library path (except the Delphi defaults), because that wouldn't be in the version control and isn't reflected on other developers or build machines.
One problem is: If one unit in $(OurLib) decides to include another new unit maybe in a new path, all projects break because they don't find this new unit. Then we have to go through all projects and add the search path. (BTW: I really hate the search path editor...wouldn't be a simple memo field much better to edit than this replace/add/delete logic?)
Another thing we do is not adding many units to our project. Especially everything from $(OurLib), but we often have units like plugins which add functionality only by including them. For different editions of our products, we want to include different units. As Delphi always messes up $IFDEFs in the uses clause in the .dpr we help us by including units named like "IncludePlugins" which then include the units depending on IFDEFs.
But not including units in the project makes navigating to a pain. The units don't appear in the project, they are not found by Ctrl+12 (Show Units), they are not shown in code completion etc.
Has anybody a better way to cope with these problems?
We use only relative paths, any libraries are always below the libs subdirectory while the project source code resides in the src subdir. So our search paths always look like:
..\libs\library1;..\libs\library2\common;
etc.
All libraries are added as svn:external to each project, so checking out the project will automatically check out the libraries as well and the search path will always point to the correct version of the library for that project.
Not perfect, but it works most of the time.
I have to agree about the search path editor, it is even worse for relative paths because you must not use the "..." buttons otherwise Delphi will insert an absolute path.
We use standard drive mappings.
Our current project is always on W: regardless if it is a network drive or a substitute.
This works great.
When you need to work on a different project, swap the W: and you can continue.
You can copy the search path out to an editor, modify it and then copy it back.
Your search path is much too big. It should contain only the things you want Delphi to recompile with your project. You don't really want to recompile the Jedi VCL every day, do you?
I create a single directory where all compiled units go. Say, C:\dcu. Specify that as the "unit output directory" in all packages. My "search path," then, is always just this:
$(Delphi)\Lib;C:\dcu
The compiler finds everything it needs, and it never finds any source code. The only source code it ever sees is in the files that directly belong to whatever project I'm compiling. The project's own source directories don't need to be on the search path because all of those files are already direct members of the project. The compiler knows exactly where they are.
For me, all a project's source files go in a single directory. If you want separate directories for different parts, like Core and GUI, then I would put those in separate packages so I could work on them and compile them separately. Even if the final program doesn't use the resultant BPLs, packages are still a good way of segmenting your project and defining dependencies.
When compiling units for one project doesn't automatically compile units for all the other projects, you're forced to change active projects. It takes a moment of your time, but it also serves as a mental reminder that you're "changing hats," too.
Although you're producing just one product, that doesn't mean you should have just one project in Delphi. You should have at least one project for each executable module (EXE, DLL, BPL) in your product. Use project groups to manage multiple projects in a single IDE session. No unit should be a member of more than one project.
I don't understand your part about plug-ins and different editions of your project. When you say "plug-in," I assume you're talking about separate executable modules, like DLLs or packages, that the customer can choose to include or not. Couldn't you turn your different editions' features into plug-in modules that simply don't include in the lesser editions? Then you don't have to worry about conditional compilation of your project; just have several different installer packagers that grab different sets of plug-ins.
I have always found it odd that this has never been addressed adequately. I suggested recently to David I that Delphi should allow the user to set up some sort of preferred development structure and that third party library publishers could be made aware of this so that they could automatically adjust their installers to install correctly in the preferred development framework. If the preferred development structure was stored in an XML file or similar, then, it could be copied from one computer to another on a development team.
As an alternative, it could make an interesting project to create a Delphi application that would allow a user to "refactor" their library installation in a high level way. You specify which folders on your system contain source or compiled components or whatever and where you want to keep source files or compiled units, hit Go and your system gets rearranged for you, while updating your Delphi environment so that when you start Delphi, it finds everything it should.
I've just recently discovered a way to have project specific environment variables in delphi builds using XE6, it's not quite as good as a full blown #define like in C but at least I can now have consistent search paths across multiple projects and create some shared option sets.
What I've done is setup environment variables in the same manner as the original poster and then override them in the dproj or optionset.
The BuildPaths.optset added to the project looks like
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<SVN_Root>..\..\..</SVN_Root>
<SVN_Riemann>$(SVN_Root)\Riemann</SVN_Riemann>
<SVN_Library>$(SVN_Root)\Library</SVN_Library>
<SVN_ThirdParty>$(SVN_Library)\Third Party</SVN_ThirdParty>
</PropertyGroup>
<ProjectExtensions>
<Borland.Personality>Delphi.Personality.12</Borland.Personality>
<Borland.ProjectType>OptionSet</Borland.ProjectType>
<BorlandProject>
<Delphi.Personality/>
</BorlandProject>
<ProjectFileVersion>12</ProjectFileVersion>
</ProjectExtensions>
</Project>

Resources