Dependency injection seems to be a good thing. In general, should dependencies be injected at the methods that require them, or should they be injected in the contructor of the class?
See the samples below to demonstrate the two ways to inject the same dependency.
//Inject the dependency into the methods that require ImportantClass
Class Something {
public Something()
{
//empty
}
public void A()
{
//do something without x
}
public void B(ImportantClass x)
{
//do something with x
}
public void C(ImportantClass x)
{
//do something with x
}
}
//Inject the dependency into the constructor once
Class Something {
private ImportantClass _x
public Something(ImportantClass x)
{
this._x = x;
}
public void A()
{
//do something without x
}
public void B()
{
//do something with this._x
}
public void C()
{
//do something with this._x
}
}
The major benefit of constructor injection is that it allows your fields to be marked final. For example:
class Foo {
private final Bar _bar;
Foo(Bar bar) {
_bar=bar;
}
}
The following page has a great list of the pro's and con's: Guice Best Practices:
Method injection
+ Isn't field injection
+ Only thing that works for some strange edge cases
Constructor injection
+ Fields can be final!
+ Injection cannot possibly have been skipped
+ Easy to see dependencies at a glance
+ It's what the idea of construction is all about
- No optional injections
- Useless when DI library can't do instantiation itself
- Subclasses need to "know about" the injections needed by their superclasses
- Less convenient for tests that only "care about" one of the parameters
If you inject during the methods than you are not differentiating the behavioral abstraction from the concrete dependencies. This is a big no no :). You want to depend on abstractions so you are not coupled with the dependencies of your classes dependencies . . .
Since your constructor would not be there in any interface that your concrete class supports than you are not coupling to that dependency. But the method calls would have that issue.
Here is a good article on this tiopic:
http://chrisdonnan.com/blog/2007/05/20/conquest-through-extreme-composition-glue-part-2/
By not injecting the dependency at each method you then force each caller to know or retrieve the dependency.
Also from a tooling standpoint there are many frameworks available (at least in .NET) that enable or make constructor injection much easier to do. This should not sway the decision but makes it much more attractive.
Good luck.
Another method is to user a setter for the dependency. Sometimes this is combined with constructor injection. This can be useful if you want to change which implementation you are using later without having to recreate the instance.
public interface IFoo
{
void Do();
}
public class DefaultFoo : IFoo
{
public void Do()
{
}
}
public class UsesFoo
{
private IFoo foo;
public IFoo Foo
{
set { this.foo = value; }
}
public UsesFoo()
{
this.Foo = new DefaultFoo();
}
public UsesFoo( IFoo foo )
{
this.Foo = foo;
}
public void DoFoo()
{
this.Foo.Do();
}
}
Crazy Bob Lee says use constructor injection whenever possible. Only use method injection when you don't have control over instantiation (like in a servlet).
Related
I would like to have a static instance method with Guice for one of the components (non-managed bean should be able to access this class). I created something like this:
public class LookupService {
#Inject
private static Provider<Injector> injector = null;
private final ILookup<IWS> lookup;
#Inject
public LookupService(ILookup<IWS> lookup) {
this.lookup = lookup;
}
public static LookupService instance() {
return injector.get().getInstance(LookupService.class);
}
public <T extends IWS> T lookup(Class<T> localInterface) {
return lookup.lookup(localInterface);
}
}
What do you think about this design ? Any other ideas on this ? (accessing managed beans from non-managed objects)
Basically, the pattern you're looking for is called "requesting static injection" and there's a Binder method dedicated to it. Once you have that down, your code looks a lot like this example from the Guice docs.
public class MainModule extends AbstractModule {
#Override public void configure() {
requestStaticInjection(LookupService.class);
}
}
public class LookupService {
/** This will be set as soon as the injector is created. */
#Inject
static Provider<LookupService> provider = null;
private final ILookup<IWS> lookup;
#Inject
public LookupService(ILookup<IWS> lookup) {
this.lookup = lookup;
}
public static LookupService instance() {
return provider.get();
}
public <T extends IWS> T lookup(Class<T> localInterface) {
return lookup.lookup(localInterface);
}
}
A few notes:
While you can still set your field to be private, remember that this means you cannot set it in tests (or in future non-Guice usage) without Guice's private-field-access magic. When using injected fields, we often make them package-private and then put the tests in the same package.
Static injection is generally seen as something to endorse only when migrating to Guice, or when you use other code you can't change. When possible, try to avoid global state--even if this means making FooBean data-only and creating an injected FooBeanService.
Even though you can inject an Injector wherever you'd like, you might find it easier to test if you simply inject a Provider<LookupService> instead. Only inject an Injector if you don't know what type you're going to need until runtime--for example, if you implement LookupService.lookup(...) using an Injector by passing the class literal to the injector to get an instance.
In fact, it's hard to say from here, but ILookup seems to act a lot like the Service Locator pattern, which solves the exact type of problem that Guice solves with dependency injection! If that's the case, you might as well rewrite ILookup to use Guice: Just remove calls to LookupService.instance().lookup(Foo.class) and instead create a matching pair of #Inject static Provider<Foo> fooProvider and requestStaticInjection(FooUser.class).
Hope that helps!
Preliminaries
I'm using Ninject.MVC3 2.2.2.0 Nuget Package for injecting into my controller an implementation of a IDomain Interface that separates my Business Logic (BL) using an Factory approach.
I'm registering my Ninject Modules in the preconfigured NinjectMVC3.cs using:
private static void RegisterServices(IKernel kernel)
{
var modules = new INinjectModule[]
{
new DomainBLModule(),
new ADOModule()
};
kernel.Load(modules);
}
I'm trying to avoid the fatal curse of the diabolic Service Locator anti-pattern.
The Domain Class uses a DBContext that i'm trying to inject an interface implementation too, via an IDBContext, with the following scenario:
IDomainBLFactory:
public interface IDomainBLFactory
{
DomainBL CreateNew();
}
DomainBLFactory:
public class DomainBLFactory : IDomainBLFactory
{
public DomainBL CreateNew()
{
return new DomainBL();
}
}
In the controller's namespace:
public class DomainBLModule : NinjectModule
{
public override void Load()
{
Bind<IDomainBLFactory>().To<DomainBLFactory>().InRequestScope();
}
}
At this point i can inject the IDomainBLFactory implementation into my controller using Ninject Constructor Injection without any problem:
public class MyController : Controller
{
private readonly IDomainBLFactory DomainBLFactory;
// Default Injected Constructor
public MyController(IDomainBLFactory DomainBLFactory)
{
this.DomainBLFactory = DomainBLFactory;
}
... (use the Domain for performing tasks/commands with the Database Context)
}
Now my central problem.
In the DomainBL implementation, i will inject the dependency to a particular DBContext, in this case ADO DBContext from Entity Framework, again, using a IDBContextFactory:
IDbDataContextFactory
public interface IDbDataContextFactory
{
myADOEntities CreateNew();
}
DbDataContextFactory
public class DbDataContextFactory : IDbDataContextFactory
{
public myADOEntities CreateNew()
{
return new myADOEntities ();
}
}
ADOModule
public class ADOModule : NinjectModule
{
public override void Load()
{
Bind<IDbDataContextFactory>().To<DbDataContextFactory>().InRequestScope();
}
}
Now in the DomainBL implementation I faced the problem of injecting the necessary interface for the DBContext Object Factory:
public class DomainBL
{
private readonly IDbDataContextFactory contextFactory;
**** OPS, i tried to understand about 10+ Stackoverflow articles ***
...
}
What have I tried?
To Use the constructor Injection. But I don't know what to inject in the call for the Factory CreateNew() in the IDBContextFactory. For clear:
public class DomainBLFactory: IDomainBLFactory
{
// Here the constructor requires one argument for passing the factory impl.
public DomainBL CreateNew()
{
return new DomainBL(?????) // I need a IDBContextFactory impl to resolve.
//It's not like in the MVC Controller where injection takes place internally
//for the controller constructor. I'm outside a controller
}
}
In this Useful Post, our unique true friend Remo Gloor describes in a comment a possible solution for me, citing: "Create an interface that has a CreateSomething method that takes everything you need to create the instance and have it return the instance. Then in your configuration you implement this interface and add an IResolutionRoot to its constructor and use this instace to Get the required object."
Questions: How do I implement this in a proper way using Ninject.MVC3 and my modest Domain Class approach? How do I Resolve the IResolutionRoot without be punished for relaying in the Service Locator anti-pattern?
To Use the property injection for an IDBContexFactory. In the course of learning and reading all the contradictory points of view plus the theoretical explanations about it, I can deduce it's not a proper way of doing the injection for my DBContexFactory class code. Nevermind. It doesn't work anyway.
public class DomainBL
{
[Inject]
public IDbDataContextFactory contextFactory
{
get;
set;
}
//Doesn't works, contextFactory is null with or without parameterless constructor
.... (methods that uses contextFactory.CreateNew()....
}
Question: What am I missing? Even if this approach is wrong the property is not injecting.
Be cursed. Use a DependencyResolver and live with the stigmata. This works and I will remain in this approach until a proper solution appears for me. And this is really frustrating because the lack of knowledge in my last 10 days effort trying to understand and do things right.
public class DomainBL
{
private readonly IDbDataContextFactory contextFactory;
this.contextFactory = DependencyResolver.Current.GetService<IDbDataContextFactory>();
//So sweet, it works.. but i'm a sinner.
}
Question: Is there a big mistake in my understanding of the Factory Approach for the injection of interfaced implementations and using a Domain Driven Approach for taking apart the Business Logic? In the case I'm wrong, what stack of patterns should I implement with confidence?
I saw before a really big quantity of articles and blogs that does not ask this important question in a open a clear way.
Remo Gloor introduces the Ninject.Extensions.Factory for the Ninject 3.0.0 RC in www.planetgeek.ch/2011/12/31/ninject-extensions-factory-introduction.
Question: Will this extension work coupled with Ninject.MVC3 for general porpouse?. In such case it should be my hope for the near future.
Thank you all in advance for your guidance and remember we appreciate your kind help. I think a lot of people will find this scenario useful too.
I don't really get the purpose of your factories. Normally, you have exactly one ObjectContext instance for one request. This means you don't need the factory and can simply bind myADOEntities in Request scope and inject it into your DomainBL without adding the factories:
Bind<myADOEntities>().ToSelf().InRequestScope();
Bind<DomainBL>().ToSelf().InRequestScope();
And Yes the factory and mvc extrensions work together.
Here's an implementation of a generic IFactory to solve the problem without resorting to the ServiceLocator anti-pattern.
First you define a nice generic factory interface
public interface IFactory<T>
{
T CreateNew();
}
And define the implementation which uses ninject kernel to create the objects requested
class NinjectFactory<T> : IFactory<T>
{
private IKernel Kernel;
public NinjectFactory( IKernel Kernel )
{
this.Kernel = Kernel;
}
public T CreateNew()
{
return Kernel.Get<T>();
}
}
Binding to your factory using the following
private static void RegisterServices(IKernel kernel)
{
kernel.Bind<myADOEntities>().ToSelf();
kernel.Bind<DomainBL>().ToSelf();
kernel.Bind(typeof(IFactory<>)).To(typeof(NinjectFactory<>));
}
You can now do the following in your controller.
public class MyController : Controller
{
private readonly IFactory<DomainBL> DomainBLFactory;
public MyController( IFactory<DomainBL> DomainBLFactory )
{
this.DomainBLFactory = DomainBLFactory;
}
// ... (use the Domain for performing tasks/commands with the Database Context)
}
And in your DomainBL
public class DomainBL
{
IFactory<myADOEntities> EntitiesFactory;
public DomainBL( IFactory<myADOEntities> EntitiesFactory )
{
this.EntitiesFactory = EntitiesFactory;
}
// ... (use the Entities factory whenever you need to create a Domain Context)
}
I'm using Ninject 2.0 to handle DI in one of my apps and I've come across something that's confusing me. Having zero documentation doesn't help too much either to be honest.
Say I have a constructor with the signature -
ctor(IServiceFactory factory1, IServiceFactory factory2)
{
this.factory1 = factory1;
this.factory2 = factory2;
}
Although these two services implement the same interface, they are quite different implementations and are used at different times so I don't want to inject an IEnumerable<IServiceFactory>.
My question is, when I'm binding the instances, how do I tell Ninject what to inject for each?
Thanks in advance.
Update
For the sake of anyone wanting to see the code would end up after reading Remo's links,...Here it is in brief. (I never realised C# had parameter attributes!)
//abstract factory
public interface IServiceFactory
{
Service Create();
}
//concrete factories
public class Service1Factory : IServiceFactory
{
public IService Create()
{
return new Service1();
}
}
public class Service2Factory : IServiceFactory
{
public IService Create()
{
return new Service2();
}
}
//Binding Module (in composition root)
public class ServiceFactoryModule : NinjectModule
{
public override void Load()
{
Bind<IServiceFactory>()
.To<Service1Factory>()
.Named("Service1");
Bind<IServiceFactory>()
.To<Service2Factory>()
.Named("Service2");
}
}
//consumer of bindings
public class Consumer(
[Named("Service1")] service1Factory,
[Named("Service2")] service2Factory)
{
}
First of all you have to ask yourself if using the same interface is correct if the implementations need to do a completely different thing. Normally, the interface is the contract between the consumer and the implementation. So if the consumer expects different things then you might consider to define different interfaces.
If you decide to stay with the same interface than you have to use conditional bindings. See the documentation about how this is done:
https://github.com/ninject/ninject/wiki/Contextual-Binding
https://github.com/ninject/ninject/wiki/Conventions-Based-Binding
Having seen how NInject can do it and AutoFac can do it I'm trying to figure out how to inject dependencies into MVC ActionFilters using Castle Windsor
At the moment I'm using an ugly static IoC helper class to resolve dependencies from the constructor code like this:
public class MyFilterAttribute : ActionFilterAttribute
{
private readonly IUserRepository _userRepository;
public MyFilterAttribute() : this(IoC.Resolve<IUserRepository>()) { }
public MyFilterAttribute(IUserRepository userRepository)
{
_userRepository = userRepository;
}
}
I'd love to remove that static antipattern IoC thing from my filters.
Any hints to as how I would go about doing that with Castle Windsor?
And no, changing DI framework is not an option.
When I needed this, I built upon the work others have done with Ninject and Windsor to get property injection dependencies on my ActionFilters.
Make a generic attribute: MyFilterAttribute with ctor taking a Type as argument - i.e. something like this:
public class MyFilterAttribute : ActionFilterAttribute {
public MyFilterAttribute(Type serviceType) {
this.serviceType = serviceType;
}
public override void OnActionExecuting(FilterExecutingContext c) {
Container.Resolve<IFilterService>(serviceType).OnActionExecuting(c);
// alternatively swap c with some context defined by you
}
// (...) action executed implemented analogously
public Type ServiceType { get { return serviceType; } }
public IWindsorContainer Container { set; get; }
}
Then use the same approach as the two articles you are referring to, in order to take control of how actions are invoked, and do a manual injection of your WindsorContainer into the attribute.
Usage:
[MyFilter(typeof(IMyFilterService))]
Your actual filter will then be in a class implementing IMyFilterService which in turn should implement IFilterService which could look something like this:
public interface IFilterService {
void ActionExecuting(ActionExecutingContext c);
void ActionExecuted(ActionExecutedContext c);
}
This way your filter will not even be tied to ASP.NET MVC, and your attribute is merely a piece of metadata - the way it is actually supposed to be! :-)
I am using windsor castle as my IoC container, and has run in to a bit of a problem. This is best explained in code, so I´ll give it a try.
I have a factory class, that should provide me with implementations of a certain interface:
public interface IObjectCreatorFactory
{
IObjectCreator GetObjectCreator(Type objectType);
}
public interface IObjectCreator
{
T CreateObject<T>(IDataRow data);
bool SupportsType(Type type);
}
Implementation of the factory class could look like this, though I am not sure this is the way to go:
public interface ObjectCreatorFactory:IObjectCreatorFactory
{
IEnumerable specificCreators;
IObjectCreator defaultCreator;
public ObjectCreatorFactory(IEnumerable<IObjectCreator> specificCreators, IObjectCreator defaultCreator)
{
this.specificCreators= specificCreators;
this.defaultCreator= defaultCreator;
}
public IObjectCreator GetObjectCreator(Type objectType)
{
foreach (IObjectCreator creator in specificCreators)
{
if (creator.SupportsType(objectType))
{
return creator;
}
}
return defaultCreator;
}
}
Now this would work out ok, but if I want my IObjectCreator instance to create child objects using a specific IObjectCreator, i would like to call ObjectCreatorFactory, and this obviously results in a circular reference:
public void SpecificObjectCreator:IObjectCreator
{
IObjectCreatorFactory objCreatorFactory;
public SpecificObjectCreator(IObjectCreatorFactory objCreatorFactory)
{
this.objCreatorFactory = objCreatorFactory;
}
T CreateObject<T>(IDataRow data)
{
T obj = new T;
ChildObject childObject = objCreatorFactory.GetObjectCreator(typeof(ChildObject)).CreateObject<ChildObject>(data);
.......
}
bool SupportsType(Type type);
}
This does not work out. What would be the way to go for this scenario, where the created objects are refering back to the factory for child object creators?
I would simply move the factory out of the constructors of the various specific object creators, and introduce a method on the IObjectCreator interface instead, responsible for initialising the creators:
public interface IObjectCreator
{
T CreateObject<T>(IDataRow data);
bool SupportsType(Type type);
void Initialize(IObjectCreatorFactory factory);
}
And then just invoke Initialze(this) on each object creator passed into the factory.
In the past I've used custom life cycle stages to take care of automatically invoking "post-construction" setup of components to both avoid circular dependencies and also to take care of other associated concerns (i.e. applying additional component configuration from an external source like a database) - but it's probably overkill for what you need.