HttpContext.Cache vs Reflection: Which is more efficient? - asp.net-mvc

I'm using reflection to get the Authorize Attributes from controllers and methods.
Since I will need to get this information over and over I'm wondering if it is faster to cache it or to simply continue to use reflection to get it.
Any thoughts?

In general Reflection is not adviced when speed it to be attained, but you must take into account the time to develop a cache that's really working (thread safe, really fast, which gives you the current value and not an old inconsistent value) and to debug it.
It's very difficult to tell which architecture will give the best performance, but you can easily write a little test to time the two different scenarios with a small set of simple cases. You might find that the speed is quite the same, or that it is significantly different. Either way you have your answer.

this answer comes a bit late but I recently had the same thought myself for one bit in a project and ended up doing the cache using the following extension method
GetOrCreate remember to lock the dictionary if you do so.
Instead you could use an ImmutableAVLTree using a lock-free strategy
Finally, there are some usefull utilities to use reflection here
It's part of a full framework but you can just copy this bit of code if that's the only bit you need.

Related

iOS Preserve custom methods in classes after recreating from core data

I am looking for someway how to preserve methods which I add to my classes which are generated from Core Data. It should be mainly init methods but It could be other methods too. When I was looking best approach for this I found this question but It's a little old and I hope there is better solution now. So exists better solution?
I think creating Categories like suggested in the accepted answer on the question you're referring to is a valid approach. The other option is to stop generating the files when you've reached a stable point for your entities. Normally they shouldn't keep changing too much (since that will introduce challenges with migrations etc). And if the changes are small enough (like adding a new property etc) its easy to do this manually.
You could also have a look at Moogenerator which I know a lot of ppl who are happy with.

What's a best practice for using dynamic type in ASP.NET MVC 4?

As we know Microsoft introduced the dynamic type a long time ago. And I also applied it in some case in the ASP.NET MVC application. But to me, it is not good for all cases. In specific, it's seen to be violating some basic principals like The Acyclic Dependencies Principle. For example, I have a package A that using package B, then in B I use dynamic and reference to A. It work fine. So the question is how do I use the dynamic type in correct way?
Speaking from experience: don't do it. Seriously, sooner or later you will regret.
Each time I decide to use dynamics I found it was a mistake. Using dynamics makes refactoring a nightmare, and you lose the biggest advantage which is type safety. Errors will show up in runtime instead of during compilation.
It's usually ten times better to refine your design and use oop principles or try to find some common interfaces.
It should be used only to simplify working with dynamic languages such as java script. Otherwise it is bad for your program performance and your mind sanity :)
So the best practice with dynamics is: try avoiding using them
Dynamic is not a type, it's syntactic sugar. The type will be object, but the compiler will put in a lot of code to detect the actual type of the variable at runtime.
It's meant to be used when you don't know the actual type, for example is used by the dynamic languages running on top of .Net.
It can be abused, as a lazy shortcut (but for that use var ) but you'll get a performance penalty in that case. Long story short, it should be used when you can't solve a problem easily with strong typing.
I think the dynamic keyword is good, but we have to using it very careful, like Mike mention as above. I used it on some small examples. When we use it, and we know it, so when somebody call to it, he/she have to know what kind of object that use in dynamic. Hope this help.

Programming for and by yourself

If you're writing something by yourself, whether to practice, solve a personal problem, or just for entertainment, is it ok, once in a while, to have a public field? Maybe?
Let me give you an analogy.
I come from a part of the world where English is not the primary language. But it’s necessary for all things in life.
During one of those usual days during my pre-teen years I said something very funny in English. Then my Dad said, “Son, think in English. Then you’ll get fluent”
I think it applies perfectly to this situation.
Think,try and question best practices in your playground. You will soon realize what’s best for what.Why are properties needed in the first place. Why should this be public? Why should I not call a virtual member from the constructor? Let me try using "new" modifier for a method call. What happens when I write 10 nested levels of if-then-else and try reading it again after 10 days. Why the heck should I use a factory pattern for a simple project. Et cetera.
And then you’ll realize without shooting at your foot, why design patterns are patterns...
I think it's reasonable if you're consciously throwing the code away afterwards. In particular, if you're experimenting with something completely different, taking shortcuts makes sense. Just don't let it lead to habits which cross over into "real" code.
Violating general principles is always "ok"! It is not an error to violate a principle but it is a trade off. The cost of not writing clean code will be higher the longer your software will survive. My take on this is: If in doubt make it clean!
Of course it's OK. It's your code, you can do whatever you want with it. Personally, I try to stick to good practice also in my private code, just to make it a natural habit so I don't have to think about it.
The short answer is yes, if you believe that you're gaining a lot by making things public instead of private with accessors you are welcome to do so. Consistency, I think, is the biggest thing to keep in mind. For instance, don't make some variables straight public, and some not. Do the same across the board if you break with best practices. It comes back to a trade-off. Almost no-one follows many of the IEEE specs for how Software Engineering should be executed and documented because the overhead is far too great, and it can get unmanageable. The same is true for personal, light-weight programming. It's okay to do something quick and dirty, just do not get used to it.
Public members are acceptable in the Data Transfer Object design patter:
Typically, the members in the Transfer Object are defined as public, thus eliminating the need for get and set methods.
One of the key advantages of OOP is for scaling and maintainability. By encapsulating code, one can hide the implementation. This means other programmers don't have to know the implementation, and can't change your object's internal state. If you language doesn't support properties, you end up with a lot of code which obfuscates and bloats your project. If the code doesn't need to be worked on by multiple programmers, you aren't producing a reusable component, and YOU are the maintenance programmer, then code in whatever manner allows you to get things done.
Does a maid need to make his/her own bed in the morning in order to practice properly making a bed?
Side note: it also depends on the language:
In Scala, according to the Uniform Access Principle, clients read and write field values as if they are publicly accessible, even though in some case they are actually calling methods. The maintainer of the class has the freedom to change the implementation without forcing users to make code changes.
Scala keeps field and method names in the same namespace.
Many languages, like Java, keep field and method names in separate namespaces.
However, these languages can’t support the uniform access principle as a result, unless they build in ad hoc support in their grammars or compilers.
So the real question is:
What service are you exposing (here by having a public field)?.
If the service (get/set a given type value) makes sense for your API, then the "shortcut" is legitimate.
As long as you encapsulate that field eventually, is it ok because you made the shortcut for the "right" reason (API and service exposure), versus the "wrong" reason (quick ad-hoc access).
A good unit test (thinking like the user of your API) can help you check if that field should be accessed directly or if it is only useful for internal development of other classes within your program.
Here's my take on it:
I'd advise avoiding public fields. They have a nasty habit of biting you later on because you can't control them. (The word you're looking for here is volatility.) Further, if you decide to change their internal implementation, you have to touch a lot more code.
Then again, that's what refactoring tools are for. If you have a decent refactoring tool, that's not nearly so difficult.
There is no silver bullet. I can't repeat this enough. If you have work to do, and you need to get it done in a hurry, writing one line of code instead of eight (as is the case in Visual Basic) is certainly faster.
Rules were meant to be broken. If a rule doesn't necessarily apply in your case, don't use it. Design patterns, coding guidelines, laws and best practices should not be treated as a straightjacket that requires you to needlessly complicate your code to the point where it is enormously complex and difficult to understand and maintain. Don't let someone force you into a practice just because it's popular or "standard" when it doesn't fit your requirements.
Again, this is a subjective opinion, and your mileage may vary.

When to violate YAGNI? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
The YAGNI "principle" states that you shouldn't focus on providing functionality before you needed as "you ain't gonna need it" anyway.
I usually tend to use common sense above any rule, no matter what but there are some times when I feel it is useful to over design or future proof something if you have good reasons, even if it's possible you'll never use it.
The actual case I have in my hands right now is more or less like this:
I've got an application that has to run over a simple proprietary communication protocol (OSI level 4). This protocol has a desirable set of characteristics (such as following NORM specification) which provide robustness to the application but which are not strictly required (UDP multicast could perform acceptable).
There's also the fact that the application is probably (but not surely) be used by other clients in the future which will not have access to the proprietary solution and, therefore, will need another solution. I know for a fact the probability of another client for the application is high.
So, what's your thinking? Should I just design for the proprietary protocol and leave the refactoring, interface extraction and so on to when I really need it or should I design now thinking for the (not so far) future?
Note: Just to be clear, I'm interested in hearing all kind of opinions to the general question (when to violate YAGNI) but I'd really like some advice or thoughts on my current dilemma :)
The reason YAGNI applies to code is that the cost of change is low. With good, well refactored code adding a feature later is normally cheap. This is different from say construction.
In the case of protocols, adding change later is usually not cheap. Old versions break, it can lead to communication failures, and an N^2 testing matrix as you have to test every version against every other version. Compare this with single codebases where new versions only have to work with themselves.
So in your case, for the protocol design, I wouldn't recommend YAGNI.
IMHO
I'd say go YAGNI first. Get it working without the NORM specification using 'the simplest thing that would work'.
Next compare if the cost of making the 'design changes' in the future is significantly greater than making the change now. Is your current solution reversible ? If you can easily make the change tomorrow or after a couple of months don't do it now. If you don't need to make an irreversible design decision now.. delay till the last responsible moment (so that you have more information to make a better decision)
To close if you know with a considerable degree of certainity that something is on the horizon and adding it later is going to be a pain, don't be an ostrich.. design for it.
e.g. I know that diagnostic logs would be needed before the product ships. Adding logging code after a month would be much more effort than adding it in today as I write each function... so this would be a case where I'd override YAGNI even though I dont need logs right now.
See-also: T. & M. Poppendieck's Lean books are better at explaining the dilemma of bullet#2 above.
Structuring your program well (abstraction, etc) isn't something that YAGNI applies to. You always want to structure your code well.
Just to clarify, I think your current predicament is due to over application of YAGNI. Structuring your code in such a way that you have a reusable library for using this protocol is just good programming practice. YAGNI does not apply.
I think that YAGNI could be inappropriate when you want to learn something :) YAGNI is good for the professionals, but not for students. When you want to learn you'll always need it.
I think it's pretty simple and obvious:
Violate YAGNI when you know that, in full certainty, You Are Going To Need It
I wouldn't worry. The fact that you aware of "YAGNI" means you are already thinking pragmatically.
I'd say, regardless of anything posted here, you are statistically more likely to come up with better code than someone who isn't analysing their practices in the same way.
I agree with Gishu and Nick.
Designing part of a protocol later often leads to thoughts like "damn, I should have done this that way, now I have to use this ugly workaround"
But it also depends on who will interface with this protocol.
If your control both ends, and that they will change of version at the same time, you can always refactor the protocol later as you would with a normal code interface.
About doing the extra protocol features implementation later, I found that implementing the protocol helps a lot to validate its design, so you may at least want to do a simple out-of-production code sample to test it, if you need the design to be official.
There are some cases where it makes sense to go against the YAGNI intuition.
Here are a few:
Following programming conventions. Especially base class and interface contracts. For example, if a base class you inherit provides a GetHashCode and an Equals method, overriding Equals but not GetHashCode breaks platform-documented rules developers are supposed to follow when they override Equals. This convention should be followed even if you find that GetHashCode would not actually be called. Not overriding GetHashCode is a bug even if there is no current way to provoke it (other than a contrived test). A future version of the platform might introduce calls to GetHashCode. Or, another programmer who has looked at documentation (in this example, the platform documentation for the base class you are inheriting) might rightfully expect that your code adheres without examining your code. Another way of thinking about this is that all code and applicable documentation must be consistent, even with documentation written by others such as that provided by the platform vendor.
Supporting customization. Particularly by external developers who will not be modifying your source code. You must figure out and implement suitable extension points in your code so that these developers can implement all kinds of addon functionality that never crossed your mind. Unfortunately, it is par for the course that you will add some extensibility features that few if any external developers ultimately use. (If it is possible to discuss the extensibility requirements with all of the external developers ahead of time or use frequent development/release cycles, great, but this is not feasible for all projects.)
Assertions, debug checks, failsafes, etc. Such code is not actually needed for your application to work correctly, but it will help make sure that your code works properly now and in the future when revisions are made.

How do you make code reusable? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Closed 2 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
Any code can be reused in a way or an other, at least if you modify the code. Random code is not very reusable as such. When I read some books, they usually say that you should explicitly make the code reusable by taking into account other situations of code usage too. But certain code should not be an omnipotent all doing class either.
I would like to have reusable code that I don't have to change later. How do you make code reusable? What are the requirements for code being reusable? What are the things that reusable code should definitely have and what things are optional?
See 10 tips on writing reusable code for some help.
Keep the code DRY. Dry means "Don't Repeat Yourself".
Make a class/method do just one thing.
Write unit tests for your classes AND make it easy to test classes.
Remove the business logic or main code away from any framework code
Try to think more abstractly and use Interfaces and Abstract classes.
Code for extension. Write code that can easily be extended in the future.
Don't write code that isn't needed.
Try to reduce coupling.
Be more Modular
Write code like your code is an External API
If you take the Test-Driven Development approach, then your code only becomes re-usable as your refactor based on forthcoming scenarios.
Personally I find constantly refactoring produces cleaner code than trying to second-guess what scenarios I need to code a particular class for.
More than anything else, maintainability makes code reusable.
Reusability is rarely a worthwhile goal in itself. Rather, it is a by-product of writing code that is well structured, easily maintainable and useful.
If you set out to make reusable code, you often find yourself trying to take into account requirements for behaviour that might be required in future projects. No matter how good you become at this, you'll find that you get these future-proofing requirements wrong.
On the other hand, if you start with the bare requirements of the current project, you will find that your code can be clean and tight and elegant. When you're working on another project that needs similar functionality, you will naturally adapt your original code.
I suggest looking at the best-practices for your chosen programming language / paradigm (eg. Patterns and SOLID for Java / C# types), the Lean / Agile programming literature, and (of course) the book "Code Complete". Understanding the advantages and disadvantages of these approaches will improve your coding practice no end. All your code will then become reausable - but 'by accident', rather than by design.
Also, see here: Writing Maintainable Code
You'll write various modules (parts) when writing a relatively big project. Reusable code in practice means you'll have create libraries that other projects needing that same functionality can use.
So, you have to identify modules that can be reused, for that
Identify the core competence of each module. For instance, if your project has to compress files, you'll have a module that will handle file compression. Do NOT make it do more than ONE THING. One thing only.
Write a library (or class) that will handle file compression, without needing anything more than the file to be compressed, the output and the compression format. This will decouple the module from the rest of the project, enabling it to be (re)used in a different setting.
You don't have to get it perfect the first time, when you actually reuse the library you will probably find out flaws in the design (for instance, you didn't make it modular enough to be able to add new compression formats easily) and you can fix them the second time around and improve the reusability of your module. The more you reuse it (and fix the flaws), the easier it'll become to reuse.
The most important thing to consider is decoupling, if you write tightly coupled code reusability is the first casualty.
Leave all the needed state or context outside the library. Add methods to specify the state to the library.
For most definitions of "reuse", reuse of code is a myth, at least in my experience. Can you tell I have some scars from this? :-)
By reuse, I don't mean taking existing source files and beating them into submission until a new component or service falls out. I mean taking a specific component or service and reusing it without alteration.
I think the first step is to get yourself into a mindset that it's going to take at least 3 iterations to create a reusable component. Why 3? Because the first time you try to reuse a component, you always discover something that it can't handle. So then you have to change it. This happens a couple of times, until finally you have a component that at least appears to be reusable.
The other approach is to do an expensive forward-looking design. But then the cost is all up-front, and the benefits (may) appear some time down the road. If your boss insists that the current project schedule always dominates, then this approach won't work.
Object-orientation allows you to refactor code into superclasses. This is perhaps the easiest, cheapest and most effective kind of reuse. Ordinary class inheritance doesn't require a lot of thinking about "other situations"; you don't have to build "omnipotent" code.
Beyond simple inheritance, reuse is something you find more than you invent. You find reuse situations when you want to reuse one of your own packages to solve a slightly different problem. When you want to reuse a package that doesn't precisely fit the new situation, you have two choices.
Copy it and fix it. You now have to nearly similar packages -- a costly mistake.
Make the original package reusable in two situations.
Just do that for reuse. Nothing more. Too much thinking about "potential" reuse and undefined "other situations" can become a waste of time.
Others have mentioned these tactics, but here they are formally. These three will get you very far:
Adhere to the Single Responsibility
Principle - it ensures your class only "does one thing", which means it's more likely it will be reusable for another application which includes that same thing.
Adhere to the Liskov
Substitution Principle - it ensures your code "does what it's supposed without surprises", which means it's more likely it will be reusable for another application that needs the same thing done.
Adhere to the Open/Closed Principle - it ensures your code can be made to behave differently without modifying its source, which means it's more likely to be reusable without direct modification.
To add to the above mentioned items, I'd say:
Make those functions generic which you need to reuse
Use configuration files and make the code use the properties defined in files/db
Clearly factor your code into such functions/classes that those provide independent functionality and can be used in different scenarios and define those scenarios using the config files
I would add the concept of "Class composition over class inheritance" (which is derived from other answers here).
That way the "composed" object doesn't care about the internal structure of the object it depends on - only its behavior, which leads to better encapsulation and easier maintainability (testing, less details to care about).
In languages such as C# and Java it is often crucial since there is no multiple inheritance so it helps avoiding inheritance graph hell u might have.
As mentioned, modular code is more reusable than non-modular code.
One way to help towards modular code is to use encapsulation, see encapsulation theory here:
http://www.edmundkirwan.com/
Ed.
Avoid reinventing the wheel. That's it. And that by itself has many benefits mentioned above. If you do need to change something, then you just create another piece of code, another class, another constant, library, etc... it helps you and the rest of the developers working in the same application.
Comment, in detail, everything that seems like it might be confusing when you come back to the code next time. Excessively verbose comments can be slightly annoying, but they're far better than sparse comments, and can save hours of trying to figure out WTF you were doing last time.

Resources