LSTM with autoencoder - machine-learning

I am trying to wrap my head around when to use LSTM with an autoencoder and when to use one without.
Does anyone have a good rule of thumb of when to use a LSTM with an autoencoder?
I am not trying to be overly broad just a classes of problems that this solves.

LSTMs are generally applied to sequential data, like time series or music scores (...). Autoencoders on the other hand learn efficient data encodings in order to e.g. classify images - or more precisely determine a specific occurrence or non-occurrence. One example could be to determine if an image actually shows a car or not (...).
LSTMs combined with Autoencoders could be applied for anomaly detection. If data can't be autoencoded accordingly it most likely represents an outlier [data sequence]. LSTMs alone could be used to predict the next value(s) in a time series.
Next time use 'Data Science Stack Exchange' - you'll get more informed answers.

Related

Machine learning with my car dataset

I’m very new to machine learning.
I have a dataset with data given me by a f1 race. User is playing this game and is giving me this dataset.
With machine learning, I have to work with this data and when a user (I know they are 10) plays a game I have to recognize who’s playing.
The data consists of datagram packet occurred in 1/10 second freq, the packets contains the following Time, laptime, lapdistance, totaldistance, speed, car position, traction control, last lap time, fuel, gear,..
I’ve thought to use a kmeans used in a supervised way.
Which algorithm could be better?
The task must be a multiclass classification. The very first step in any machine learning activity is to define a score metric (https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/). That allows you to compare models between themselves and decide which is better. Then build a base model with random forest or/and logistic regression as suggested in another answer - they perform well out-of-the-box. Then try to play with features and understand which of them are more informative. And don't forget about a visualizations - they give many hints for data wrangling, etc.
this is somewhat a broad question, so I'll try my best
kmeans is unsupervised algorithm meaning it will find the classes itself and it best used when you know there are multiple classes but you don't know what exactly they are... using it with labeled data just means you will compute the distance of new vector v to each vector in the dataset and pick the one (or ones using majority vote) which give the min distance , this is not considered as machine learning
in this case when you do have the labels, supervised approach will yield much better results
I suggest try random forest and logistic regression at first, those are the most basic and common algorithms and they give pretty good results
if you haven't achieve the desired accuracy you can use deep learning and build a neural network with input layer as big as your packet's values and output layer of the number of classes, in between you can use one or multiple hidden layers with various nodes, but this is advanced approach and you better pick up some experience in machine learning field before pursue it
Note: the data is a time series, meaning that every driver has it's own behaviour of driving a car, so data should be considered as bulks of points, with this you can apply pattern matching technics, also there are a several neural networks build exactly for this data (like RNN) but this is far far advanced and much more difficult to implement

How does pre-training improve classification in neural networks?

Many of the papers I have read so far have this mentioned "pre-training network could improve computational efficiency in terms of back-propagating errors", and could be achieved using RBMs or Autoencoders.
If I have understood correctly, AutoEncoders work by learning the
identity function, and if it has hidden units less than the size of
input data, then it also does compression, BUT what does this even have
anything to do with improving computational efficiency in propagating
error signal backwards? Is it because the weights of the pre
trained hidden units does not diverge much from its initial values?
Assuming data scientists who are reading this would by theirselves
know already that AutoEncoders take inputs as target values since
they are learning identity function, which is regarded as
unsupervised learning, but can such method be applied to
Convolutional Neural Networks for which the first hidden layer is
feature map? Each feature map is created by convolving a learned
kernel with a receptive field in the image. This learned kernel, how
could this be obtained by pre-training (unsupervised fashion)?
One thing to note is that autoencoders try to learn the non-trivial identify function, not the identify function itself. Otherwise they wouldn't have been useful at all. Well the pre-training helps moving the weight vectors towards a good starting point on the error surface. Then the backpropagation algorithm, which is basically doing gradient descent, is used improve upon those weights. Note that gradient descent gets stuck in the closes local minima.
[Ignore the term Global Minima in the image posted and think of it as another, better, local minima]
Intuitively speaking, suppose you are looking for an optimal path to get from origin A to destination B. Having a map with no routes shown on it (the errors you obtain at the last layer of the neural network model) kind of tells you where to to go. But you may put yourself in a route which has a lot of obstacles, up hills and down hills. Then suppose someone tells you about a route a a direction he has gone through before (the pre-training) and hands you a new map (the pre=training phase's starting point).
This could be an intuitive reason on why starting with random weights and immediately start to optimize the model with backpropagation may not necessarily help you achieve the performance you obtain with a pre-trained model. However, note that many models achieving state-of-the-art results do not use pre-training necessarily and they may use the backpropagation in combination with other optimization methods (e.g. adagrad, RMSProp, Momentum and ...) to hopefully avoid getting stuck in a bad local minima.
Here's the source for the second image.
I don't know a lot about autoencoder theory, but I've done a bit of work with RBMs. What RBMs do is they predict what the probability is of seeing the specific type of data in order to get the weights initialized to the right ball park- it is considered an (unsupervised) probabilistic model, so you don't correct using the known labels. Basically, the idea here is that having a learning rate that is too big will never lead to convergence but having one that is too small will take forever to train. Thus, by "pretraining" in this way you find out the ball park of the weights and then can set the learning rate to be small in order to get them down to the optimal values.
As for the second question, no, you don't generally prelearn kernels, at least not in an unsupervised fashion. I suspect that what is meant by pretraining here is a bit different than in your first question- this is to say, that what is happening is that they are taking a pretrained model (say from model zoo) and fine tuning it with a new set of data.
Which model you use generally depends on the type of data you have and the task at hand. Convnets I've found to train faster and efficiently, but not all data has meaning when convolved, in which case dbns may be the way to go. Unless say, you have a small amount of data then I'd use something other than neural networks entirely.
Anyways, I hope this helps clear some of your questions.

How to find instances in an unlabeled dataset, that are most promising to be informative when building a classifier?

My problem is that I have a large unlabeled dataset, but over time I want it to become labeled and build a confident classifier.
This can be done by active learning, but active learning needs an initial classifier to be built for it to then estimate and rank the remaining unlabeled instances by how informative they are expected to be to the classifier.
To build the initial classifier, I need to label some examples by hand. my questions is: Are there methods to find likely informative examples in the initial unlabeled dataset, without the help of an initial classifier?
I thought about just using k-means with some number of clusters, run it and label one example from each cluster, then train the classifier on these.
Is there a better way?
I have to disagree with Edward Raff.
k-means may turn out to be useful here (if your data is continuous).
Just use a rather large value of k.
The idea is to avoid picking too similar objects, but get a sample that covers the data reasonably well. k-means may fail to "cluster" complex data, but it works reasonably well for quantization. So it will return a "less random, more representative" sample from your data.
But beware: k-means centers do not correspond to data points. You could either use a medoid based algorithm, or just find the closes instance to each center.
Some alternatives:
if you can afford to label "a" objects, run k-means with k=a
run k-means with k=5*a, and select 20% of the centers (maybe preferring those with highest density)
choose 0.5*a by k-means, 0.5*a randomly
do either, but choose only 0.5*a objects to label. Train a classifier, find the 0.5*a unlabeled objects that the classifier had the lowest confidence on
No. If you don't have any labeled data, you have no way of determining which points are the most informative. k-means does not necessarily help either, as you don't know where the decision surface lives.
You are overthinking the problem. Just randomly sample some data and get it labeled. Once you have a few hundred - thousand points labeled you can start to look at the labeled data and makes some decisions about where to head next.

Which machine learning classifier to choose, in general? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
Suppose I'm working on some classification problem. (Fraud detection and comment spam are two problems I'm working on right now, but I'm curious about any classification task in general.)
How do I know which classifier I should use?
Decision tree
SVM
Bayesian
Neural network
K-nearest neighbors
Q-learning
Genetic algorithm
Markov decision processes
Convolutional neural networks
Linear regression or logistic regression
Boosting, bagging, ensambling
Random hill climbing or simulated annealing
...
In which cases is one of these the "natural" first choice, and what are the principles for choosing that one?
Examples of the type of answers I'm looking for (from Manning et al.'s Introduction to Information Retrieval book):
a. If your data is labeled, but you only have a limited amount, you should use a classifier with high bias (for example, Naive Bayes).
I'm guessing this is because a higher-bias classifier will have lower variance, which is good because of the small amount of data.
b. If you have a ton of data, then the classifier doesn't really matter so much, so you should probably just choose a classifier with good scalability.
What are other guidelines? Even answers like "if you'll have to explain your model to some upper management person, then maybe you should use a decision tree, since the decision rules are fairly transparent" are good. I care less about implementation/library issues, though.
Also, for a somewhat separate question, besides standard Bayesian classifiers, are there 'standard state-of-the-art' methods for comment spam detection (as opposed to email spam)?
First of all, you need to identify your problem. It depends upon what kind of data you have and what your desired task is.
If you are Predicting Category :
You have Labeled Data
You need to follow Classification Approach and its algorithms
You don't have Labeled Data
You need to go for Clustering Approach
If you are Predicting Quantity :
You need to go for Regression Approach
Otherwise
You can go for Dimensionality Reduction Approach
There are different algorithms within each approach mentioned above. The choice of a particular algorithm depends upon the size of the dataset.
Source: http://scikit-learn.org/stable/tutorial/machine_learning_map/
Model selection using cross validation may be what you need.
Cross validation
What you do is simply to split your dataset into k non-overlapping subsets (folds), train a model using k-1 folds and predict its performance using the fold you left out. This you do for each possible combination of folds (first leave 1st fold out, then 2nd, ... , then kth, and train with the remaining folds). After finishing, you estimate the mean performance of all folds (maybe also the variance/standard deviation of the performance).
How to choose the parameter k depends on the time you have. Usual values for k are 3, 5, 10 or even N, where N is the size of your data (that's the same as leave-one-out cross validation). I prefer 5 or 10.
Model selection
Let's say you have 5 methods (ANN, SVM, KNN, etc) and 10 parameter combinations for each method (depending on the method). You simply have to run cross validation for each method and parameter combination (5 * 10 = 50) and select the best model, method and parameters. Then you re-train with the best method and parameters on all your data and you have your final model.
There are some more things to say. If, for example, you use a lot of methods and parameter combinations for each, it's very likely you will overfit. In cases like these, you have to use nested cross validation.
Nested cross validation
In nested cross validation, you perform cross validation on the model selection algorithm.
Again, you first split your data into k folds. After each step, you choose k-1 as your training data and the remaining one as your test data. Then you run model selection (the procedure I explained above) for each possible combination of those k folds. After finishing this, you will have k models, one for each combination of folds. After that, you test each model with the remaining test data and choose the best one. Again, after having the last model you train a new one with the same method and parameters on all the data you have. That's your final model.
Of course, there are many variations of these methods and other things I didn't mention. If you need more information about these look for some publications about these topics.
The book "OpenCV" has a great two pages on this on pages 462-463. Searching the Amazon preview for the word "discriminative" (probably google books also) will let you see the pages in question. These two pages are the greatest gem I have found in this book.
In short:
Boosting - often effective when a large amount of training data is available.
Random trees - often very effective and can also perform regression.
K-nearest neighbors - simplest thing you can do, often effective but slow and requires lots of memory.
Neural networks - Slow to train but very fast to run, still optimal performer for letter recognition.
SVM - Among the best with limited data, but losing against boosting or random trees only when large data sets are available.
Things you might consider in choosing which algorithm to use would include:
Do you need to train incrementally (as opposed to batched)?
If you need to update your classifier with new data frequently (or you have tons of data), you'll probably want to use Bayesian. Neural nets and SVM need to work on the training data in one go.
Is your data composed of categorical only, or numeric only, or both?
I think Bayesian works best with categorical/binomial data. Decision trees can't predict numerical values.
Does you or your audience need to understand how the classifier works?
Use Bayesian or decision trees, since these can be easily explained to most people. Neural networks and SVM are "black boxes" in the sense that you can't really see how they are classifying data.
How much classification speed do you need?
SVM's are fast when it comes to classifying since they only need to determine which side of the "line" your data is on. Decision trees can be slow especially when they're complex (e.g. lots of branches).
Complexity.
Neural nets and SVMs can handle complex non-linear classification.
As Prof Andrew Ng often states: always begin by implementing a rough, dirty algorithm, and then iteratively refine it.
For classification, Naive Bayes is a good starter, as it has good performances, is highly scalable and can adapt to almost any kind of classification task. Also 1NN (K-Nearest Neighbours with only 1 neighbour) is a no-hassle best fit algorithm (because the data will be the model, and thus you don't have to care about the dimensionality fit of your decision boundary), the only issue is the computation cost (quadratic because you need to compute the distance matrix, so it may not be a good fit for high dimensional data).
Another good starter algorithm is the Random Forests (composed of decision trees), this is highly scalable to any number of dimensions and has generally quite acceptable performances. Then finally, there are genetic algorithms, which scale admirably well to any dimension and any data with minimal knowledge of the data itself, with the most minimal and simplest implementation being the microbial genetic algorithm (only one line of C code! by Inman Harvey in 1996), and one of the most complex being CMA-ES and MOGA/e-MOEA.
And remember that, often, you can't really know what will work best on your data before you try the algorithms for real.
As a side-note, if you want a theoretical framework to test your hypothesis and algorithms theoretical performances for a given problem, you can use the PAC (Probably approximately correct) learning framework (beware: it's very abstract and complex!), but to summary, the gist of PAC learning says that you should use the less complex, but complex enough (complexity being the maximum dimensionality that the algo can fit) algorithm that can fit your data. In other words, use the Occam's razor.
Sam Roweis used to say that you should try naive Bayes, logistic regression, k-nearest neighbour and Fisher's linear discriminant before anything else.
My take on it is that you always run the basic classifiers first to get some sense of your data. More often than not (in my experience at least) they've been good enough.
So, if you have supervised data, train a Naive Bayes classifier. If you have unsupervised data, you can try k-means clustering.
Another resource is one of the lecture videos of the series of videos Stanford Machine Learning, which I watched a while back. In video 4 or 5, I think, the lecturer discusses some generally accepted conventions when training classifiers, advantages/tradeoffs, etc.
You should always keep into account the inference vs prediction trade-off.
If you want to understand the complex relationship that is occurring in your data then you should go with a rich inference algorithm (e.g. linear regression or lasso). On the other hand, if you are only interested in the result you can go with high dimensional and more complex (but less interpretable) algorithms, like neural networks.
Selection of Algorithm is depending upon the scenario and the type and size of data set.
There are many other factors.
This is a brief cheat sheet for basic machine learning.

How to approach machine learning problems with high dimensional input space?

How should I approach a situtation when I try to apply some ML algorithm (classification, to be more specific, SVM in particular) over some high dimensional input, and the results I get are not quite satisfactory?
1, 2 or 3 dimensional data can be visualized, along with the algorithm's results, so you can get the hang of what's going on, and have some idea how to aproach the problem. Once the data is over 3 dimensions, other than intuitively playing around with the parameters I am not really sure how to attack it?
What do you do to the data? My answer: nothing. SVMs are designed to handle high-dimensional data. I'm working on a research problem right now that involves supervised classification using SVMs. Along with finding sources on the Internet, I did my own experiments on the impact of dimensionality reduction prior to classification. Preprocessing the features using PCA/LDA did not significantly increase classification accuracy of the SVM.
To me, this totally makes sense from the way SVMs work. Let x be an m-dimensional feature vector. Let y = Ax where y is in R^n and x is in R^m for n < m, i.e., y is x projected onto a space of lower dimension. If the classes Y1 and Y2 are linearly separable in R^n, then the corresponding classes X1 and X2 are linearly separable in R^m. Therefore, the original subspaces should be "at least" as separable as their projections onto lower dimensions, i.e., PCA should not help, in theory.
Here is one discussion that debates the use of PCA before SVM: link
What you can do is change your SVM parameters. For example, with libsvm link, the parameters C and gamma are crucially important to classification success. The libsvm faq, particularly this entry link, contains more helpful tips. Among them:
Scale your features before classification.
Try to obtain balanced classes. If impossible, then penalize one class more than the other. See more references on SVM imbalance.
Check the SVM parameters. Try many combinations to arrive at the best one.
Use the RBF kernel first. It almost always works best (computationally speaking).
Almost forgot... before testing, cross validate!
EDIT: Let me just add this "data point." I recently did another large-scale experiment using the SVM with PCA preprocessing on four exclusive data sets. PCA did not improve the classification results for any choice of reduced dimensionality. The original data with simple diagonal scaling (for each feature, subtract mean and divide by standard deviation) performed better. I'm not making any broad conclusion -- just sharing this one experiment. Maybe on different data, PCA can help.
Some suggestions:
Project data (just for visualization) to a lower-dimensional space (using PCA or MDS or whatever makes sense for your data)
Try to understand why learning fails. Do you think it overfits? Do you think you have enough data? Is it possible there isn't enough information in your features to solve the task you are trying to solve? There are ways to answer each of these questions without visualizing the data.
Also, if you tell us what the task is and what your SVM output is, there may be more specific suggestions people could make.
You can try reducing the dimensionality of the problem by PCA or the similar technique. Beware that PCA has two important points. (1) It assumes that the data it is applied to is normally distributed and (2) the resulting data looses its natural meaning (resulting in a blackbox). If you can live with that, try it.
Another option is to try several parameter selection algorithms. Since SVM's were already mentioned here, you might try the approach of Chang and Li (Feature Ranking Using Linear SVM) in which they used linear SVM to pre-select "interesting features" and then used RBF - based SVM on the selected features. If you are familiar with Orange, a python data mining library, you will be able to code this method in less than an hour. Note that this is a greedy approach which, due to its "greediness" might fail in cases where the input variables are highly correlated. In that case, and if you cannot solve this problem with PCA (see above), you might want to go to heuristic methods, which try to select best possible combinations of predictors. The main pitfall of this kind of approaches is the high potential of overfitting. Make sure you have a bunch "virgin" data that was not seen during the entire process of model building. Test your model on that data only once, after you are sure that the model is ready. If you fail, don't use this data once more to validate another model, you will have to find a new data set. Otherwise you won't be sure that you didn't overfit once more.
List of selected papers on parameter selection:
Feature selection for high-dimensional genomic microarray data
Oh, and one more thing about SVM. SVM is a black box. You better figure out what is the mechanism that generate the data and model the mechanism and not the data. On the other hand, if this would be possible, most probably you wouldn't be here asking this question (and I wouldn't be so bitter about overfitting).
List of selected papers on parameter selection
Feature selection for high-dimensional genomic microarray data
Wrappers for feature subset selection
Parameter selection in particle swarm optimization
I worked in the laboratory that developed this Stochastic method to determine, in silico, the drug like character of molecules
I would approach the problem as follows:
What do you mean by "the results I get are not quite satisfactory"?
If the classification rate on the training data is unsatisfactory, it implies that either
You have outliers in your training data (data that is misclassified). In this case you can try algorithms such as RANSAC to deal with it.
Your model(SVM in this case) is not well suited for this problem. This can be diagnozed by trying other models (adaboost etc.) or adding more parameters to your current model.
The representation of the data is not well suited for your classification task. In this case preprocessing the data with feature selection or dimensionality reduction techniques would help
If the classification rate on the test data is unsatisfactory, it implies that your model overfits the data:
Either your model is too complex(too many parameters) and it needs to be constrained further,
Or you trained it on a training set which is too small and you need more data
Of course it may be a mixture of the above elements. These are all "blind" methods to attack the problem. In order to gain more insight into the problem you may use visualization methods by projecting the data into lower dimensions or look for models which are suited better to the problem domain as you understand it (for example if you know the data is normally distributed you can use GMMs to model the data ...)
If I'm not wrong, you are trying to see which parameters to the SVM gives you the best result. Your problem is model/curve fitting.
I worked on a similar problem couple of years ago. There are tons of libraries and algos to do the same. I used Newton-Raphson's algorithm and a variation of genetic algorithm to fit the curve.
Generate/guess/get the result you are hoping for, through real world experiment (or if you are doing simple classification, just do it yourself). Compare this with the output of your SVM. The algos I mentioned earlier reiterates this process till the result of your model(SVM in this case) somewhat matches the expected values (note that this process would take some time based your problem/data size.. it took about 2 months for me on a 140 node beowulf cluster).
If you choose to go with Newton-Raphson's, this might be a good place to start.

Resources