Feature selection with Decision Tree - machine-learning

I'm supposed to perform feature selection of my dataset (independent variables: some aspects of a patient, target varibale: patient ill or not) using a dcision tree. After that with the features selected I've to implement a different ML model.
My doubt is: when I'm implementing the decison tree is it necessary having a train and a test set or just fit the model on the whole data?

it's necessary to split the dataset into train-test because otherwise you will measure the performance with data used in training and could end up into over-fitting.
Over-fitting is where the training error constantly decrease but the generalization error increase, where by generalization error is intended as the ability of the model to classify correctly new (never seen before) samples.

Related

Pretraining Deep Learning Model for Weight Initialization

When pretraining Deep Learning model (lets say a deep convolutional neural netowork) in order to achieve good weight initialization, do I use entire training set without validation (so that I avoid information leak) or just subset of training set?
If you want to fine-tune your network after training it on your dataset then you can use the same dataset (making sure that the data in the training/test, and validation sets do not switch around). What you can also do as 'pre-training' is to download a model that is already trained on a similar dataset/problem to yours and then training it on your dataset. This is known as transfer learning and works well for similar problems, but of course the bigger the gap between the 2 problems the more you need to train.
In conclusion: you can use any dataset as long as the validation set remains hidden from the network.
I think if we divide the dataset into training, validation and test data, it will be more useful. Keeping a completely new test data aside and validating the model with only validation data is a good choice. Entire training data should be used for training.

Dropping accuracy rate by adding more predictors

I have run some prediction models e.g. Logistic Regression, SVM, decision tree, ... on a dataset. When I add more dimensions (predictors) then my accuracy rates in all models drops . How can I interpret this?
Usually it means that the features that you are adding are either unimportant or even strongly correlated with other features you already have. Your model might therefore pick up a "random" signal in the training set from these features, and then fail to apply it to test data, as it is not a real pattern.
However, interpretation of this kind of problem is very model dependent. Linear Models do not behave the same as decision trees (for example, they are more sensitive to correlated features), so it is weird that they would react the same way. Please detail more if you can.

How do neural networks learn functions instead of memorize them?

For a class project, I designed a neural network to approximate sin(x), but ended up with a NN that just memorized my function over the data points I gave it. My NN took in x-values with a batch size of 200. Each x-value was multiplied by 200 different weights, mapping to 200 different neurons in my first layer. My first hidden layer contained 200 neurons, each one a linear combination of the x-values in the batch. My second hidden layer also contained 200 neurons, and my loss function was computed between the 200 neurons in my second layer and the 200 values of sin(x) that the input mapped to.
The problem is, my NN perfectly "approximated" sin(x) with 0 loss, but I know it wouldn't generalize to other data points.
What did I do wrong in designing this neural network, and how can I avoid memorization and instead design my NN's to "learn" about the patterns in my data?
It is same with any machine learning algorithm. You have a dataset based on which you try to learn "the" function f(x), which actually generated the data. In real life datasets, it is impossible to get the original function from the data, and therefore we approximate it using something g(x).
The main goal of any machine learning algorithm is to predict unseen data as best as possible using the function g(x).
Given a dataset D you can always train a model, which will perfectly classify all the datapoints (you can use a hashmap to get 0 error on the train set), but which is overfitting or memorization.
To avoid such things, you yourself have to make sure that the model does not memorise and learns the function. There are a few things which can be done. I am trying to write them down in an informal way (with links).
Train, Validation, Test
If you have large enough dataset, use Train, Validation, Test splits. Split the dataset in three parts. Typically 60%, 20% and 20% for Training, Validation and Test, respectively. (These numbers can vary based on need, also in case of imbalanced data, check how to get stratified partitions which preserve the class ratios in every split). Next, forget about the Test partition, keep it somewhere safe, don't touch it. Your model, will be trained using the Training partition. Once you have trained the model, evaluate the performance of the model using the Validation set. Then select another set of hyper-parameter configuration for your model (eg. number of hidden layer, learaning algorithm, other parameters etc.) and then train the model again, and evaluate based on Validation set. Keep on doing this for several such models. Then select the model, which got you the best validation score.
The role of validation set here is to check what the model has learned. If the model has overfit, then the validation scores will be very bad, and therefore in the above process you will discard those overfit models. But keep in mind, although you did not use the Validation set to train the model, directly, but the Validation set was used indirectly to select the model.
Once you have selected a final model based on Validation set. Now take out your Test set, as if you just got new dataset from real life, which no one has ever seen. The prediction of the model on this Test set will be an indication how well your model has "learned" as it is now trying to predict datapoints which it has never seen (directly or indirectly).
It is key to not go back and tune your model based on the Test score. This is because once you do this, the Test set will start contributing to your mode.
Crossvalidation and bootstrap sampling
On the other hand, if your dataset is small. You can use bootstrap sampling, or k-fold cross-validation. These ideas are similar. For example, for k-fold cross-validation, if k=5, then you split the dataset in 5 parts (also be carefull about stratified sampling). Let's name the parts a,b,c,d,e. Use the partitions [a,b,c,d] to train and get the prediction scores on [e] only. Next, use the partitions [a,b,c,e] and use the prediction scores on [d] only, and continue 5 times, where each time, you keep one partition alone and train the model with the other 4. After this, take an average of these scores. This is indicative of that your model might perform if it sees new data. It is also a good practice to do this multiple times and perform an average. For example, for smaller datasets, perform a 10 time 10-folds cross-validation, which will give a pretty stable score (depending on the dataset) which will be indicative of the prediction performance.
Bootstrap sampling is similar, but you need to sample the same number of datapoints (depends) with replacement from the dataset and use this sample to train. This set will have some datapoints repeated (as it was a sample with replacement). Then use the missing datapoins from the training dataset to evaluate the model. Perform this multiple times and average the performance.
Others
Other ways are to incorporate regularisation techniques in the classifier cost function itself. For example in Support Vector Machines, the cost function enforces conditions such that the decision boundary maintains a "margin" or a gap between two class regions. In neural networks one can also do similar things (although it is not same as in SVM).
In neural network you can use early stopping to stop the training. What this does, is train on the Train dataset, but at each epoch, it evaluates the performance on the Validation dataset. If the model starts to overfit from a specific epoch, then the error for Training dataset will keep on decreasing, but the error of the Validation dataset will start increasing, indicating that your model is overfitting. Based on this one can stop training.
A large dataset from real world tends not to overfit too much (citation needed). Also, if you have too many parameters in your model (to many hidden units and layers), and if the model is unnecessarily complex, it will tend to overfit. A model with lesser pameter will never overfit (though can underfit, if parameters are too low).
In the case of you sin function task, the neural net has to overfit, as it is ... the sin function. These tests can really help debug and experiment with your code.
Another important note, if you try to do a Train, Validation, Test, or k-fold crossvalidation on the data generated by the sin function dataset, then splitting it in the "usual" way will not work as in this case we are dealing with a time-series, and for those cases, one can use techniques mentioned here
First of all, I think it's a great project to approximate sin(x). It would be great if you could share the snippet or some additional details so that we could pin point the exact problem.
However, I think that the problem is that you are overfitting the data hence you are not able to generalize well to other data points.
Few tricks that might work,
Get more training points
Go for regularization
Add a test set so that you know whether you are overfitting or not.
Keep in mind that 0 loss or 100% accuracy is mostly not good on training set.

Why not optimize hyperparameters on train dataset?

When developing a neural net one typically partitions training data into Train, Test, and Holdout datasets (many people call these Train, Validation, and Test respectively. Same things, different names). Many people advise selecting hyperparameters based on performance in the Test dataset. My question is: why? Why not maximize performance of hyperparameters in the Train dataset, and stop training the hyperparameters when we detect overfitting via a drop in performance in the Test dataset? Since Train is typically larger than Test, would this not produce better results compared to training hyperparameters on the Test dataset?
UPDATE July 6 2016
Terminology change, to match comment below. Datasets are now termed Train, Validation, and Test in this post. I do not use the Test dataset for training. I am using a GA to optimize hyperparameters. At each iteration of the outer GA training process, the GA chooses a new hyperparameter set, trains on the Train dataset, and evaluates on the Validation and Test datasets. The GA adjusts the hyperparameters to maximize accuracy in the Train dataset. Network training within an iteration stops when network overfitting is detected (in the Validation dataset), and the outer GA training process stops when overfitting of the hyperparameters is detected (again in Validation). The result is hyperparameters psuedo-optimized for the Train dataset. The question is: why do many sources (e.g. https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf, Section B.1) recommend optimizing the hyperparameters on the Validation set, rather than the Train set? Quoting from Srivasta, Hinton, et al (link above): "Hyperparameters were tuned on the validation set such that the best validation error was produced..."
The reason is that developing a model always involves tuning its configuration: for example, choosing the number of layers or the size of the layers (called the hyper-parameters of the model, to distinguish them from the parameters, which are the network’s weights). You do this tuning by using as a feedback signal the performance of the model on the validation data. In essence, this tuning is a form of learning: a search for a good configuration in some parameter space. As a result, tuning the configuration of the model based on its performance on the validation set can quickly result in overfitting to the validation set, even though your model is never directly trained on it.
Central to this phenomenon is the notion of information leaks. Every time you tune a hyperparameter of your model based on the model’s performance on the validation set, some information about the validation data leaks into the model. If you do this only once, for one parameter, then very few bits of information will leak, and your validation set will remain reliable to evaluate the model. But if you repeat this many times—running one experiment, evaluating on the validation set, and modifying your model as a result—then you’ll leak an increasingly significant amount of information about the validation set into the model.
At the end of the day, you’ll end up with a model that performs artificially well on the validation data, because that’s what you optimized it for. You care about performance on completely new data, not the validation data, so you need to use a completely different, never-before-seen dataset to evaluate the model: the test dataset. Your model shouldn’t have had access to any information about the test set, even indirectly. If anything about the model has been tuned based on test set performance, then your measure of generalization will be flawed.
There are two things you are missing here. First, minor, is that test set is never used to do any training. This is a purpose of validation (test is just to asses your final, testing performance). The major missunderstanding is what it means "to use validation set to fit hyperparameters". This means exactly what you describe - to train a model with a given hyperparameters on the training set, and use validation to simply check if you are overfitting (you use it to estimate generalization) , but you do not really "train" on them, you simply check your scores on this subset (which, as you noticed - is way smaller).
You cannot "stop training hyperparamters" because this is not a continuous process, usually hyperparameters are just "possible sets of values", and you have to simply test lots of them, there is no valid way of defining a direct trainingn procedure between actual metric you are interested in (like accuracy) and hyperparameters (like size of the hidden layer in NN or even C parameter in SVM), as the functional link between these two is not differentiable, is highly non convex and in general "ugly" to optimize. If you can define a nice optimization procedure in terms of a hyperparameter than it is usually not called a hyperparameter but a parameter, the crucial distinction in this naming convention is what makes it hard to optimize directly - we call hyperparameter a parameter, than cannot be directly optimized against thus you need a "meta method" (like simply testing on validation set) to select it.
However, you can define a "nice" meta optimization protocol for hyperparameters, but this will still use validation set as an estimator, for example Bayesian optimization of hyperparameters does exactly this - it tries to fit a function saying how well is you model behaving in the space of hyperparameters, but in order to have any "training data" for this meta-method, you need validation set to estimate it for any given set of hyperparameters (input to your meta method)
simple answer: we do
In the case of a simple feedforward neural network you do have to select e.g. layer and unit count per layer, regularization (and non-continuous parameters like topology if not feedforward and loss function) in the beginning and you would optimize on those.
So, in summary you optimize:
ordinary parameters only during training but not during validation
hyperparameters during training and during validation
It is very important not to touch the many ordinary parameters (weights and biases) during validation. That's because there are thousands of degrees of freedom in them which means they can learn the data you train them on. But then the model doesn't generalize to new data as well (even when that new data originated from the same distribution). You usually only have very few degrees of freedom in the hyperparameters which usually control the rigidity of the model (regularization).
This holds true for other machine learning algorithms like decision trees, forests, etc as well.

What is the right way to measure if a machine learning model has overfit?

I understand the intuitive meaning of overfitting and underfitting. Now, given a particular machine learning model that is trained upon the training data, how can you tell if the training overfitted or underfitted the data? Is there a quantitative way to measure these factors?
Can we look at the error and say if it has overfit or underfit?
I believe the easiest approach is to have two sets of data. Training data and validation data. You train the model on the training data as long as the fitness of the model on the training data is close to the fitness of the model on the validation data. When the models fitness is increasing on the training data but not on the validation data then you're overfitting.
The usual way, I think, is known as cross-validation. The idea is to split the training set into several pieces, known as folds, then pick one at a time for evaluation and train on the remaining ones.
It does not, of course, measure the actual overfitting or underfitting, but if you can vary the complexity of the model, e.g. by changing the regularization term, you can find the optimal point. This is as far as one can go with just training and testing, I think.
You don't look at the error on the training data, but on the validation data only.
A common way of testing is to try different model complexities, and see how the error changes with model complexity. Usually these have a typical curve. In the beginning, the errors quickly improve. Then there is saturation (where the model is good), then they start decreasing again, but not because of being a better model, but because of overfitting. You want to be on the low complexity end of the plateau, the simplest model that provides a reasonable generalization.
The existing answers are not strictly speaking wrong, but they are not complete. Yes, you do need a validation set, but an important issue here is that you do not simply look at the model error on the validation set and try to minimize it. It will lead to overfitting all the same, because you will effectively be fitting on a validation set that way. The right approach is not minimizing the error on your sets, but making an error independent from which training and validation sets you use. If error on validation set is significantly different (doesn't matter if it is worse, or better), then the model is overfit. Also, certainly, this should be done in a cross-validation way when you train on some random set and then validate on another random set.

Resources