Temporal workflow hardware constraints for low latency - low-latency

I have recently started reading about temporal for use in my company's project. I have built an in-house orchestrator for short lived tasks which is able to support 100 tps with 8 gb heap and 4 cores. I am running on a oracle database with 16gb and 4 cores.
My in-house orchestrator uses kafka as an event source and a trie to model a DSL using which the next service to be invoked is decided. On comparing my simple orchestrator with temporal I see that while temporal has more features for resiliency and instrumentation of workflows it seems to be taking too much hardware and does not seem to have a focus on low latency. Is my observation correct and should I look for a combination of my low latency orchestrator with temporal or am I missing something here.

Related

Does containerization always lead to cpu, ram and storage cost savings as compared to VMs?

Being a naive in the world of containers, and after reading a lot of literature online, I was wondering if someone could render some guidance.
I wanted to know if containers always lead to cost savings in terms of cpu, memory and storage when compared with the same application running inside a VM.
I can think of a scenario when it won’t when the scaleset in case of VM running inside an orchestrator like kubernetes is a high number leading to more consumption of compute.
I was wondering what is the general understanding here
Containerization is not about cost savings in terms of CPU/RAM/Storage, but a lot more.
When an app gets deployed on a VM, you need to have specific tools like Ansible/Chef/Puppet to optimize deployments, and you also need additional tools to monitor the load to increase/decrease the number of VMs running, you also need additional tools to provide WideIP support across the running services in case of a REST API, and the list goes on.
With Containers running on Kubernetes, you have all these features built in to some extent, and when you deploy Servicemesh framework like Istio, you get additional features which add lot of value with minimum effort including Circuit Breakers, retries, authentication, etc.

Why would one chose many smaller machine types instead of fewer big machine types?

In a clustering high-performance computing framework such as Google Cloud Dataflow (or for that matter even Apache Spark or Kubernetes clusters etc), I would think that it's far more performant to have fewer really BIG machine types rather than many small machine types, right? As in, it's more performant to have 10 n1-highcpu-96 rather than say 120 n1-highcpu-8 machine types, because
the cpus can use shared memory, which is way way faster than network communications
if a single thread needs access to lots of memory for a single threaded operation (eg sort), it has access to that greater memory in a BIG machine rather than a smaller one
And since the price is the same (eg 10 n1-highcpu-96 costs the same as 120 n1-highcpu-8 machine types), why would anyone opt for the smaller machine types?
As well, I have a hunch that for the n1-highcpu-96 machine type, we'd occupy the whole host, so we don't need to worry about competing demands on the host by another VM from another Google cloud customer (eg contention in the CPU caches
or motherboard bandwidth etc.), right?
Finally, although I don't think the google compute VMs correctly report the "true" CPU topology of the host system, if we do chose the n1-highcpu-96 machine type, the reported CPU topology may be a touch closer to the "truth" because presumably the VM is using up the whole host, so the reported CPU topology is a little closer to the truth, so any programs (eg the "NUMA" aware option in Java?) running on that VM that may attempt to take advantage of the topology has a better chance of making the "right decisions".
It will depend on many factors if you want to choose many instances with smaller machine type or a few instances with big machine types.
The VMs sizes differ not only in number of cores and RAM, but also on network I/O performance.
Instances with small machine types have are limited in CPU and I/O power and are inadequate for heavy workloads.
Also, if you are planning to grow and scale it is better to design and develop your application in several instances. Having small VMs gives you a better chance of having them distributed across physical servers in the datacenter that have the best resource situation at the time the machines are provisioned.
Having a small number of instances helps to isolate fault domains. If one of your small nodes crashes, that only affects a small number of processes. If a large node crashes, multiple processes go down.
It also depends on the application you are running on your cluster and the workload.I would also recommend going through this link to see the sizing recommendation for an instance.

Optimal min hardware configuration for an Orleans silo

What is an optimal minimum or recommended hardware (mostly cores-ram) for an orleans silo? for applications having CPU tasks and IO tasks
and with which criteria orleans decides to scale, adding more nodes in the cloud?
We recommend at least 4 core machines, 8 cores is even before. In terms on memory it mostly depends on your application usage. Orleans itself is pretty modest with its internal memory usage. The general guidelines is to prefer fewer larger machines over more smaller machines.
Orleans does not automatically add new nodes. Thus should be done outside Orleans, via the mechanisns provided by the Cloud provider. Once new nodes are added, Orleans will automatically join them to Orleans cluster and will start utilizing them.

Machine type for google cloud dataflow jobs

I noticed there is an option that allows specifying a machine type.
What is the criteria I should use to decide whether to override the default machine type?
In some experiments I saw that throughput is better with smaller instances, but on the other hand jobs tend to experience more "system" failures when many small instances are used instead of a smaller number of default instances.
Thanks,
G
Dataflow will eventually optimize the machine type for you. In the meantime here are some scenarios I can think of where you might want to change the machine type.
If your ParDO operation needs a lot of memory you might want to change the machine type to one of the high memory machines that Google Compute Engine provides.
Optimizing for cost and speed. If your CPU utilization is less than 100% you could probably reduce the cost of your job by picking a machine with fewer CPUs. Alternatively, if you increase the number of machines and reduce the number of CPUs per machine (so total CPUs stays approximately constant) you can make your job run faster but cost approximately the same.
Can you please elaborate more on what type of system failures you are seeing? A large class of failures (e.g. VM interruptions) are probabilistic so you would expect to see a larger absolute number of failures as the number of machines increases. However, failures like VM interruptions should be fairly rare so I'd be surprised if you noticed an increase unless you were using order of magnitude more VMs.
On the other hand, its possible you are seeing more failures because of resource contention due to the increased parallelism of using more machines. If that's the case we'd really like to know about it to see if this is something we can address.

Mirrored queue performance factors

We operate two dual-node brokers, each broker having quite different queues and workloads. Each box has 24 cores (H/T) worth of Xeon E5645 # 2.4GHz with 48GB RAM, connected by Gigabit LAN with ~150μs latency, running RHEL 5.6, RabbitMQ 3.1, Erlang R16B with HiPE off. We've tried with HiPE on but it made no noticeable performance impact, and was very crashy.
We appear to have hit a ceiling for our message rates of between 1,000/s and 1,400/s both in and out. This is broker-wide, not per-queue. Adding more consumers doesn't improve throughput overall, just gives that particular queue a bigger slice of this apparent "pool" of resource.
Every queue is mirrored across the two nodes that make up the broker. Our publishers and consumers connect equally to both nodes in a persistant way. We notice an ADSL-like asymmetry in the rates too; if we manage to publish a high rate of messages the deliver rate drops to high double digits. Testing with an un-mirrored queue has much higher throughput, as expected. Queues and Exchanges are durable, messages are not persistent.
We'd like to know what we can do to improve the situation. The CPU on the box is fine, beam takes a core and a half for 1 process, then another 80% each of two cores for another couple of processes. The rest of the box is essentially idle. We are using ~20GB of RAM in userland with system cache filling the rest. IO rates are fine. Network is fine.
Is there any Erlang/OTP tuning we can do? delegate_count is the default 16, could someone explain what this does in a bit more detail please?
This is difficult to answer without knowing more about how your producers and consumers are configured, which client library you're using and so on. As discussed on irc (http://dev.rabbitmq.com/irclog/index.php?date=2013-05-22) a minute ago, I'd suggest you attempt to reproduce the topology using the MulticastMain java load test tool that ships with the RabbitMQ java client. You can configure multiple producers/consumers, message sizes and so on. I can certainly get 5Khz out of a two-node cluster with HA on my desktop, so this may be a client (or application code) related issue.

Resources