I made a binary calculator with bitwise functions (bitand, bitor, bitxor, ect.) in google sheets (yes I am aware that there are built in functions to do this, this seemed more fun). It is an 8 bit calculator, and I currently have addition and subtraction implemented. Multiplication is planned, but seems way too hard at the moment
One of the things I came across is once a calculation is done, the user has to manually 0 out the addends/minuend and subtrahend one digit at a time. I would like to optimize this process.
I can easily create a script that will input 0 into all the cells and hook that up to a button. I have a feeling that's the route I'm going to have to go. But I want to challenge myself in making cool stuff, so I want the coolest solution.
My question is: is there a way I can do this without a script attached? I've been experimenting with ARRAYFORMULA and VLOOKUP, but I don't have a clear answer yet.
Expected behavior:
User inputs their calculation. User records the answer. User selects both 8 bit binary numbers (currently residing in A1:H2) and presses backspace. Google Sheet automatically translates those blank cells to 0's.
take a look into custom internal formatting. any text can be converted to "0"
then see shifted arrays:
={"", "x"}
formula from G9 will print "0" into H9. also, you can anytime enter value in H9 to "overwrite" the zero and after you don't need the entered value you just clear it with backspace or delete key and it will be filled with "0" again.
also, note that after you enter value in H9, G9 will error out and such error cant be suppressed so see hidden cells:
not sure if it's cool enough but it works (with compromises)
I am writing a scientific paper with LaTeX. In this paper I report outcomes of several statistical analyses. I am tired of making the reporting including all decimals and formatting consistent across the paper. I want to generate a \newcommand that delivers a more consistent reporting across the paper.
To be more precise let me give you the following example:
In the paper there is the sentence: "X and Y are correlated ($\rho$= .8, $p$= .023)."
I want to create a command that helps me making the reporting of the contents of the brackets more consistent. I imagine something like:
"X and Y are correlated \stats[.8][.023]." That delivers a clean output.
Since I am not too familiar with the \newcommand command, I was wondering whether there exists already a package or solution for this? If not, is there a way I can code this myself?
You could create your own macro like this:
\documentclass{article}
\newcommand{\stats}[2]{($\rho= #1$, $p= #2$)}
\begin{document}
\stats{.8}{.023}
\end{document}
When I write math in LaTeX I often need to perform simple arithmetic on numbers in my LaTeX source, like 515.1544 + 454 = ???.
I usually copy-paste the LaTeX code into Google to get the result, but I still have to manually change the syntax, e.g.
\frac{154,7}{25} - (289 - \frac{1337}{42})
must be changed to
154,7/25 - (289 - 1337/42)
It seems trivial to write a program to do this for the most commonly used operations.
Is there a calculator which understand this syntax?
EDIT:
I know that doing this perfectly is impossible (because of the halting problem). Doing it for the simple cases I need is trivial. \frac, \cdot, \sqrt and a few other tags would do the trick. The program could just return an error for cases it does not understand.
WolframAlpha can take input in TeX form.
http://blog.wolframalpha.com/2010/09/30/talk-to-wolframalpha-in-tex/
The LaTeXCalc project is designed to do just that. It will read a TeX file and do the computations. For more information check out the home page at http://latexcalc.sourceforge.net/
The calc package allows you to do some calculations in source, but only within commands like \setcounter and \addtolength. As far as I can tell, this is not what you want.
If you already use sage, then the sagetex package is pretty awesome (if not, it's overkill). It allows you get nicely formatted output from input like this:
The square of
$\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}$
is \sage{matrix([[1, 2], [3,4]])^2}.
The prime factorization of the current page number is \sage{factor(\thepage)}
As Andy says, the answer is yes there is a calculator that can understand most latex formulas: Emacs.
Try the following steps (assuming vanilla emacs):
Open emacs
Open your .tex file (or activate latex-mode)
position the point somewhere between the two $$ or e.g. inside the begin/end environment of the formula (or even matrix).
use calc embedded mode for maximum awesomeness
So with point in the formula you gave above:
$\frac{154,7}{25} - (289 - \frac{1337}{42})$
press C-x * d to duplicate the formula in the line below and enter calc-embedded mode which should already have activated a latex variant of calc for you. Your buffer now looks like this:
$\frac{154,7}{25} - (289 - \frac{1337}{42})$
$\frac{-37651}{150}$`
Note that the fraction as already been transformed as far as possible. Doing the same again (C-x * d) and pressing c f to convert the fractional into a floating point number yields the following buffer:
$\frac{154,7}{25} - (289 - \frac{1337}{42})$
$\frac{-37651}{150}$
$-251.006666667$
I used C-x * d to duplicate the formula and then enter embedded mode in order to have the intermediate values, however there is also C-x * e which avoids the duplication and simply enters embedded mode for the current formula.
If you are interested you should really have a look at the info page for Emacs Calc - Embedded Mode. And in general the help for the Gnu Emaca Calculator together with the awesome interactive tutorial.
You can run an R function called Sweave on a (mostly TeX with some R) file that can replace R expressions with their results in Tex.
A tutorial can be found here: http://www.scribd.com/doc/6451985/Learning-to-Sweave-in-APA-Style
My calculator can do that. To get the formatted output, double-click the result formula and press ctrl+c to copy it.
It can do fairly advanced stuff too (differentiation, easy integrals (and not that easy ones)...).
https://calculator-algebra.org/
A sample computation:
https://calculator-algebra.org:8166/#%7B%22currentPage%22%3A%22calculator%22%2C%22calculatorInput%22%3A%22%5C%5Cfrac%7B1%2B2%7D%7B3%7D%3B%20d%2Fdx(arctan%20(2x%2B3))%22%2C%22monitoring%22%3A%22true%22%7D
There is a way to do what you want just not quite how you describe.
You can use the fp package (\usepackage[options]{fp}) the floating point package will do anything you want; solving equations, adding dividing and many more. Unfortunately it will not read the LaTeX math you instead have to do something a little different, the documentation is very poor so I'll give an example here.
for instance if you want to do (2x3)/5 you would type:
\FPmul\p{2}{3} % \p is the assignment of the operation 2x3
\FPupn\p{\p{} 7 round} % upn evaluates the assignment \p and rounds to 7dp
\FPdiv\q{\p}{5} % divides the assigned value p by 5 names result q
\FPupn\q{\q{} 4 round} % rounds the result to 4 decimal places and evaluates
$\frac{2\times3}{5}=\FPprint\q$ % This will print the result of the calculations in the math.
the FP commands are always ibvisible, only FPprint prints the result associated with it so your documents will not be messy, FP commands can be placed wherever you wish (not verb) as long as they are before the associated FPprint.
You could just paste it into symbolab which as a bonus has free step by step solutions. Also since symbolab uses mathquill it instantly formats your latex.
Considering that LaTeX itself is a Turing-complete markup language I strongly doubt you can build something like this that isn't built directly into LaTeX. Furthermore, LaTeX math matkup itself has next to no semantic meaning, it merely describes the visual appearance.
That being said, you can probably hack together something which recognizes a non-programmable subset of LaTeX math markup and spits out the result in the same way. If all you're interested in is simple arithmetics with fractions and integers (careful with decimal fractions, though, as they may appear as 3{,}141... in German texts :)) this shouldn't be too hard. But once you start with integrals, matrices, etc. I fear that LaTeX lacks expressiveness to accurately describe your intentions. It is a document preparation system, after all and thus not very suitable as input for computer algebra systems.
Side note: You can switch to Word which has—in its current version—a math markup language which is sufficiently LaTeX-like (by now it even supports LaTeX markup) and yet still Google-friendly for simpler terms:
With the free Microsoft Math add-in you can even let Word calculate expressions in-place:
There is none, because it is generally not possible.
LaTeX math mode markup is presentational markup and there are cases in which it does not provide enough information to calculate the expression.
That was one of the reasons MathML content markup was created and also why MathML is used in Mathematica. MathML actually is sort of two languages in one:
presentation markup
content markup
To accomplish what you are after you'll have to have MathML with comibned presentation and content markup (see MathML spec).
In my opinion your best bet is to use MathML (even if it is verbose) and convert to LaTeX when necessary. That said, I also like LaTeX syntax best and maybe what we need is a compact syntax for MathML (something similar in spirit to RelaxNG compact syntax).
For calculations with LaTeX you can use a CalcTeX package.
This package understand elements of LaTeX language and makes an calculations, for example your problem is avialble on
http://sg.bzip.pl/CalcTeX/examples/frac.tgz
or just please write
\noindent
For calculation please use following enviromentals
$515.1544 + 454$
or
\[ \frac{154.7}{25}-(289-\frac{1337}{42.})
\]
or
\begin{equation}
154.7/25-(289-1337/42.)
\end{equation}
For more info please visite project web site or contact author of this project.
For performing the math within your LaTeX itself, you might also look into the pgfmath package, which is more powerful and convenient than the calc package. You can find out how to use it from Part VI of The TikZ and PGF Packages Manual, which you can find here (version 2.10 currently): http://mirror.unl.edu/ctan/graphics/pgf/base/doc/generic/pgf/pgfmanual.pdf
Emacs calc-mode accepts latex-input. I use it daily. Press "d", followed by "L" to enter latex input mode. Press "'" to open a prompt where you can paste your tex.
Anyone saing it is not possible is wrong.
IIRC Mathematica can do it.
There is none, because it is generally not possible. LaTeX math mode
markup is presentational markup and there are cases in which it does
not provide enough information to calculate the expression.
You are right. LaTeX as it is does not provide enough info to make any calculations.Moreover, it does not represent any information to do it. But nobody prevents to wright in LaTeX format a text that contains such an information.
It is a difficult path, because you need to build a system of rules superimposed on what content ofthe text in Latex format needs to contain that it would be recognizable by your interpreter. And then convince the user that it is necessary to learn, etc. etc...
The easiest way to create a logical and intuitive calculator of mathematical expressions. And the expression is already possible to convert latex. It's almost like what you said. This is implemented in the program which I have pointed to. AnEasyCalc allows to type an expression as you type the plane text in any text editor. It checks, calculates and generate LateX string by its own then. Its very easy and rapid work. Just try and you will see that.
This is not exactly what you are asking for but it is a nice package
that you can include in a LaTeX document to do all kind of operations including arithmetic, calculus and even vectors and matrices:
The package name is "calculator"
http://mirror.unl.edu/ctan/macros/latex/contrib/calculator/calculator.pdf
The latex2sympy2 Python library can parse LaTeX math expressions.
from latex2sympy2 import latex2sympy
tex_str = r"""YOUR TEX MATH HERE"""
tex_str = r"\frac{9\pi}{\ln(12)}+22" # example TeX math
sympy_object = latex2sympy(tex_str)
evaluated_tex = float(sympy_object.evalf())
print(evaluated_tex)
This Python 3 code evaluates 9𝜋/ln(12)+22 (in its LaTeX from above) to 33.37842899841745.
The snippet above only handles basic algebraic simplification (math expressions without variables). Since the library converts LaTeX math to SymPy objects, the above code can easily be tweaked and extended to handle much more complicated LaTeX math (including solving derivatives, integrals, etc...).
The latex2sympy2 library can be installed via the pip command: pip install --user latex2sympy2
<>
try the AnEasyCalc program. It allows to get the latex formula very easy:
http://steamandwater.od.ua/AnEasyCalc/
:)
List Comprehension is a very useful code mechanism that is found in several languages, such as Haskell, Python, and Ruby (just to name a few off the top of my head). I'm familiar with the construct.
I find myself working on an Open Office Spreadsheet and I need to do something fairly common: I want to count all of the values in a range of cells that fall between a high and low bounds. I instantly thought that list comprehension would do the trick, but I can't find anything analogous in Open Office. There is a function called "COUNTIF", and it something similar, but not quite what I need.
Is there a construct in Open Office that could be used for list comprehension?
CountIf can count values equal to one chosen. Unfortunately it seems that there is no good candidate for such function. Alternatively you can use additional column with If to display 1 or 0 if the value fits in range or not accordingly:
=If(AND({list_cell}>=MinVal; {list_cell}<=MaxVal); 1; 0)
Then only thing left is to sum up this additional column.
Assuming:
your range is A1:A10
your lower bound is at B1
your upper bound is at B2
then what you want can be achieved by:
=COUNTIFS(A1:A10, ">" & B1, A1:A10, "<" & B2)
(you might need to change commas into semicolons, depending on your language preference for decimal point)
Quoting from the installed OpenOffice documentation:
The logical relation between criteria can be defined as logical AND (conjunction). In other words, if and only if all given criteria are met, a value from the corresponding cell of the given Func_Range is taken into calculation.
This function is part of the Open Document Format for Office Applications (OpenDocument) standard Version 1.2. (ISO/IEC 26300:2-2015)