How to project shadows on meshed environment in RealityKit? - augmented-reality

I'm using RealityKit in combination with a USDZ model and scene understanding (LiDAR iPhone), and simply want my model to project some nice shadows on the real-world environment. I can easily get a custom spotlight on my model, but fail to project any shadows from my it.
I'm stuck with what appears to be the default top-down lighting.
What am I doing wrong?
My code:
override func viewDidLoad() {
super.viewDidLoad()
arView.session.delegate = self
arView.environment.sceneUnderstanding.options = []
arView.environment.sceneUnderstanding.options.insert(.receivesLighting)
arView.automaticallyConfigureSession = false
let configuration = ARWorldTrackingConfiguration()
configuration.planeDetection = [.horizontal, .vertical]
configuration.sceneReconstruction = .mesh
configuration.environmentTexturing = .automatic
arView.session.run(configuration) }
Here's the function I call when adding a model
#IBAction func addMyModel(_ sender: Any) {
do {
let mymodel = try ModelEntity.load(named: "mymodel")
// Lights
let spotLight = CustomSpotLight()
let anchor = AnchorEntity(plane: .horizontal, minimumBounds: [0.30, 1.00])
anchor.children.append(mymodel)
anchor.addChild(spotLight)
self.arView.scene.anchors.append(anchor)
} catch {
fatalError("Failed to load asset.")
}
}
and finally here's my custom spotlight code:
import ARKit
import RealityKit
class CustomSpotLight: Entity, HasSpotLight {
required init() {
super.init()
self.light = SpotLightComponent(color: .blue,
intensity: 500000,
innerAngleInDegrees: 45,
outerAngleInDegrees: 169,
attenuationRadius: 9.0)
self.shadow = SpotLightComponent.Shadow()
self.position.y = 5.0
self.orientation = simd_quatf(angle: -.pi/1.5,
axis: [1,0,0])
}
}

Related

ARKit: Tracking VisonCoreML detected object

I'm new to iOS and I am currently refactoring a code I got from a tutorial on VisionCoreML and ARKit that adds a node to the detected object.
currently, if the I move the object the node does not move and follow the object. I can see from Apple's sample code for Recognizing Objects in Live Capture they use layers and repositions this each time Vision detects the object at a new position which is what I was hoping to replicate with an ARObject.
Is there a way I can achieve this with ARKit?
Any help around this would be greatly appreciated.
Thanks.
EDIT: Working code with solution
#IBOutlet var sceneView: ARSCNView!
private var viewportSize: CGSize!
private var previousAnchor: ARAnchor?
private var trackingNode: SCNNode!
lazy var objectDetectionRequest: VNCoreMLRequest = {
do {
let model = try VNCoreMLModel(for: yolov5s(configuration: MLModelConfiguration()).model)
let request = VNCoreMLRequest(model: model) { [weak self] request, error in
self?.processDetections(for: request, error: error)
}
return request
} catch {
fatalError("Failed to load Vision ML model.")
}
}()
func renderer(_ renderer: SCNSceneRenderer, willRenderScene scene: SCNScene, atTime time: TimeInterval) {
guard let capturedImage = sceneView.session.currentFrame?.capturedImage
else { return }
let imageRequestHandler = VNImageRequestHandler(cvPixelBuffer: capturedImage, orientation: .leftMirrored, options: [:])
do {
try imageRequestHandler.perform([objectDetectionRequest])
} catch {
print("Failed to perform image request.")
}
}
func processDetections(for request: VNRequest, error: Error?) {
guard error == nil else {
print("Object detection error: \(error!.localizedDescription)")
return
}
guard let results = request.results else { return }
for observation in results where observation is VNRecognizedObjectObservation {
let objectObservation = observation as! VNRecognizedObjectObservation
let topLabelObservation = objectObservation.labels.first
print(topLabelObservation!.identifier + " " + "\(Int(topLabelObservation!.confidence * 100))%")
guard recognisedObject(topLabelObservation!.identifier) && topLabelObservation!.confidence > 0.9
else { continue }
let rect = VNImageRectForNormalizedRect(
objectObservation.boundingBox,
Int(self.sceneView.bounds.width),
Int(self.sceneView.bounds.height))
let midPoint = CGPoint(x: rect.midX, y: rect.midY)
let raycastQuery = self.sceneView.raycastQuery(from: midPoint,
allowing: .estimatedPlane,
alignment: .any)
let raycastArray = self.sceneView.session.raycast(raycastQuery!)
guard let raycastResult = raycastArray.first else { return }
let position = SCNVector3(raycastResult.worldTransform.columns.3.x,
raycastResult.worldTransform.columns.3.y,
raycastResult.worldTransform.columns.3.z)
if let _ = trackingNode {
trackingNode!.worldPosition = position
} else {
trackingNode = createNode()
trackingNode!.worldPosition = position
self.sceneView.scene.rootNode.addChildNode(trackingNode!)
}
}
}
private func recognisedObject(_ identifier: String) -> Bool {
return identifier == "remote" || identifier == "mouse"
}
private func createNode() -> SCNNode {
let sphereNode = SCNNode(geometry: SCNSphere(radius: 0.01))
sphereNode.geometry?.firstMaterial?.diffuse.contents = UIColor.purple
return sphereNode
}
private func loadSession() {
let configuration = ARWorldTrackingConfiguration()
configuration.planeDetection = []
sceneView.session.run(configuration)
}
override func viewDidLoad() {
super.viewDidLoad()
sceneView.delegate = self
viewportSize = sceneView.frame.size
}
override func viewWillAppear(_ animated: Bool) {
super.viewWillAppear(animated)
loadSession()
}
override func viewWillDisappear(_ animated: Bool) {
super.viewWillDisappear(animated)
sceneView.session.pause()
}
To be honest, the technologies you're using here cannot do that out of the box. YOLO (and any other object detection model you swapped out for it) have no built in concept of tracking the same object in a video. They look for objects in a 2D bitmap, and return 2D bounding boxes for them. As either the camera or object moves, and you pass in the next capturedImage buffer, it will give you a new bounding box in the correct position, but it has no way of knowing whether or not it's the same instance of the object detected in a previous frame.
To make this work, you'll need to do some post processing of those Vision results to determine whether or not it's the same object, and if so, manually move the anchor/mesh to match the new position. If you're confident there should only be one object in view at any given time, then it's pretty straightforward. If there will be multiple objects, you're venturing into complex (but still achievable) territory.
You could try to incorporate Vision Tracking, which might work though would depend on the nature and behavior of the tracked object.
Also, sceneView.hitTest() is deprecated. You should probably port that over to use ARSession.raycast()

Using ARKit, loading of 3D object is not anchored to the specific latitude longitude location

I tried Apple ARGeotracking for loading 3D model which is of a house.I provided the latitude and the longitude location so as to load the object at that specific location. But the object is not anchored to the specific lat long location. Also the object tends to move as the user moves.
code for horizontal surface detection
// Create a new AR Scene View.
sceneView = ARSCNView(frame: view.bounds)
sceneView.delegate = self
// Show statistics such as fps and timing information
sceneView.showsStatistics = true
view.addSubview(sceneView)
//configure scene view session to detect horizontal planes
let configuration = ARWorldTrackingConfiguration()
configuration.planeDetection = .horizontal
sceneView.session.run(configuration)
//uncomment to see feature points
sceneView.debugOptions = [ARSCNDebugOptions.showFeaturePoints]
// Responds to a user tap on the AR view.
#objc
func handleTapOnARView(_ sender: UITapGestureRecognizer) {
addGeoAnchor(at: projectLocation2D)
}
Adding ARGeoAnchor and providing latitude location location in params
//MARK:- ADD GEOANCHOR
func addGeoAnchor(at location: CLLocationCoordinate2D, altitude: CLLocationDistance? = nil) {
var geoAnchor: ARGeoAnchor!
if let altitude = altitude {
geoAnchor = ARGeoAnchor(coordinate: location, altitude: altitude)
} else {
geoAnchor = ARGeoAnchor(coordinate: location)
}
addGeoAnchor(geoAnchor)
}
func addGeoAnchor(_ geoAnchor: ARGeoAnchor) {
// Don't add a geo anchor if Core Location isn't sure yet where the user is.
guard isGeoTrackingLocalized else {
alertUser(withTitle: "Cannot add geo anchor", message: "Unable to add geo anchor because geo tracking has not yet localized.")
return
}
arView.session.add(anchor: geoAnchor)
}
var isGeoTrackingLocalized: Bool {
if let status = arView.session.currentFrame?.geoTrackingStatus, status.state == .localized {
return true
}
return false
}
func distanceFromDevice(_ coordinate: CLLocationCoordinate2D) -> Double {
if let devicePosition = locationManager.location?.coordinate {
return MKMapPoint(coordinate).distance(to: MKMapPoint(devicePosition))
} else {
return 0
}
}
// MARK: - ARSessionDelegate
func session(_ session: ARSession, didAdd anchors: [ARAnchor]) {
for geoAnchor in anchors.compactMap({ $0 as? ARGeoAnchor }) {
// Effect a spatial-based delay to avoid blocking the main thread.
DispatchQueue.main.asyncAfter(deadline: .now() + (distanceFromDevice(geoAnchor.coordinate) / 10)) {
// Add an AR placemark visualization for the geo anchor.
self.arView.scene.addAnchor(Entity.placemarkEntity(for: geoAnchor))
}
// Add a visualization for the geo anchor in the map view.
let anchorIndicator = AnchorIndicator(center: geoAnchor.coordinate)
// Remember the geo anchor we just added
let anchorInfo = GeoAnchorWithAssociatedData(geoAnchor: geoAnchor, mapOverlay: anchorIndicator)
self.geoAnchors.append(anchorInfo)
}
}
didAdd anchor method is called and here I have provided the url to load the model as I was using EchoAR sdk to load model into our app. The models loads but it is not anchored to the specific geographic location.Here the value of modelURL is coming fro echoAR sdk that I have used. It return model in .usdz format.
extension Entity {
static func placemarkEntity(for arAnchor: ARAnchor) -> AnchorEntity {
let placemarkAnchor = AnchorEntity(anchor: arAnchor)
if modelURL != nil{
let entity = (try? Entity.load(contentsOf: modelURL!))!
placemarkAnchor.addChild(entity)
}
else{
Utilities.sharedInstance.showError(message: "8C. ===Unable to render AR Model===")
}
return placemarkAnchor
}
}

How to apply MPSImageGuidedFilter in Swift

I applied OpenCV guided filter for my project in Python successfully and now I have to carry this function to my iOS application. I searched Apple developer website and found out a filter called MPSImageGuidedFilter. I suppose it works in a similar way as OpenCV guided filter. However, my limited knowledge of iOS programming does not let me figure out how to use it. Unfortunately, I could not find a sample code on the web too. Is there anyone who used this filter before? I really appreciate the help. Or a sample code using any filter under MPS would be helpful to figure out.
After a few days of hard work, I managed to make MPSImageGUidedFilter. Please see below the code who wants to work on:
import UIKit
import MetalPerformanceShaders
import MetalKit
class ViewController: UIViewController {
public var texIn: MTLTexture!
public var coefficient: MTLTexture!
public var context: CIContext!
let device = MTLCreateSystemDefaultDevice()!
var queue: MTLCommandQueue!
var Metalview: MTKView { return view as! MTKView }
override func viewDidLoad() {
super.viewDidLoad()
Metalview.drawableSize.height = 412
Metalview.drawableSize.width = 326
Metalview.framebufferOnly = false
Metalview.device = device
Metalview.delegate = self
queue = device.makeCommandQueue()
let textureLoader = MTKTextureLoader(device: device)
let urlCoeff = Bundle.main.url(forResource: "mask", withExtension: "png")
do {
coefficient = try textureLoader.newTexture(URL: urlCoeff!, options: [:])
} catch {
fatalError("coefficient file not uploaded")
}
let url = Bundle.main.url(forResource: "guide", withExtension: "png")
do {
texIn = try textureLoader.newTexture(URL: url!, options: [:])
} catch {
fatalError("resource file not uploaded")
}
}
}
extension ViewController: MTKViewDelegate {
func mtkView(_ view: MTKView, drawableSizeWillChange size: CGSize) {}
func draw(in view: MTKView) {
guard let commandBuffer = queue.makeCommandBuffer(),
let drawable = view.currentDrawable else {
return
}
let shader = MPSImageGuidedFilter(device: device, kernelDiameter: 5)
shader.epsilon = 0.001
let textOut = drawable.texture
shader.encodeReconstruction(to: commandBuffer, guidanceTexture: texIn, coefficientsTexture: coefficient, destinationTexture: textOut)
commandBuffer.present(drawable)
commandBuffer.commit()
}
}

Using GKComponent to make reusable shields

I am trying to make a simple game: Space ship on the bottom of the screen shooting asteroids "falling" from the top of the screen.
I am learning ECS and GameplayKit, and have been trying to turn shields into a component. I've heavily relied on Apple's DemoBots sample app, and have lifted the PhysicsComponent, ColliderType, and ContactNotifiableType from the sample code.
A shield needs to render the assets assoicated with it (one for full shields and one for half shields), a different physics body from the ship because it's radius is noticeably larger than the ship, and to keep track of it's state. To do this I wrote:
final class ShieldComponent: GKComponent {
enum ShieldLevel: Int {
case full = 0, half, none
}
var currentShieldLevel: ShieldLevel = .full {
didSet {
switch currentShieldLevel {
case .full:
node.isHidden = false
node.texture = SKTexture(image: #imageLiteral(resourceName: "shield"))
case .half:
node.isHidden = false
node.texture = SKTexture(image: #imageLiteral(resourceName: "damagedShield"))
case .none:
node.isHidden = true
}
}
}
let node: SKSpriteNode
override init() {
node = SKSpriteNode(imageNamed: "shield")
super.init()
node.physicsBody = {
let physicsBody = SKPhysicsBody(circleOfRadius: node.frame.size.width / 2)
physicsBody.pinned = true
physicsBody.allowsRotation = false
physicsBody.affectedByGravity = false
ColliderType.definedCollisions[.shield] = [
.obstacle,
.powerUp
]
physicsBody.categoryBitMask = ColliderType.shield.rawValue
physicsBody.contactTestBitMask = ColliderType.obstacle.rawValue
physicsBody.collisionBitMask = ColliderType.obstacle.rawValue
return physicsBody
}()
}
required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")
}
func loseShields() {
if let newShieldLevel = ShieldLevel(rawValue: self.currentShieldLevel.rawValue + 1) {
self.currentShieldLevel = newShieldLevel
}
}
func restoreShields() {
self.currentShieldLevel = .full
}
}
And in my Ship initializer I do this:
let shieldComponent = ShieldComponent()
renderComponent.node.addChild(shieldComponent.node)
It would great if I could reuse the RenderComponent, and PhysicsComponent from DemoBots have I have with my ship and asteroid GKEntity subclasses, but components cannot have components. I had made ShieldComponent a ContactNotifiableType, but because the shield node does not actually belong to the ship entity.
I know I'm clearly coming at this wrong, and I'm at a loss of how to correct this. I'm hoping to get an example of how to make a shield component.
You must understand that components are meant to handle only one behaviour. so git rid of the physics code in your init() function and instead Build a Physics component similar to the one in DemoBots.
Tweak Your render Component to your liking. The problem with using DemoBots code is that its not perfectly Suited. So lets tweak it
class RenderComponent: GKComponent {
// MARK: Properties
// The `RenderComponent` vends a node allowing an entity to be rendered in a scene.
#objc let node = SKNode()
var sprite = SKSpriteNode
// init
init(imageNamed name: String) {
self.sprite = SKSpriteNode(imageNamed: name)
}
// MARK: GKComponent
override func didAddToEntity() {
node.entity = entity
}
override func willRemoveFromEntity() {
node.entity = nil
}
}
final class ShieldComponent: GKComponent {
var node : SKSpriteNode
//add reference to ship entity
weak var ship: Ship?
enum ShieldLevel: Int {
case full = 0, half, none
}
var currentShieldLevel: ShieldLevel = .full {
didSet {
switch currentShieldLevel {
case .full:
node.isHidden = false
node.texture = SKTexture(image: #imageLiteral(resourceName: "shield"))
case .half:
node.isHidden = false
node.texture = SKTexture(image: #imageLiteral(resourceName: "damagedShield"))
case .none:
node.isHidden = true
}
}
}
// Grab the visual component from the entity. Unwrap it with a Guard. If the Entity doesnt have the component you get an error.
var visualComponentRef : RenderComponent {
guard let renderComponent = ship?.component(ofType: RenderComponent.self) else {
fatalError("entity must have a render component")
}
}
override init(shipEntity ship: Ship) {
let visualComponent = RenderComponent(imageNamed: "imageName")
node = visualComponent.sprite
self.ship = ship
super.init()
// get rid of this. Use a Physics Component for this, Kep your components to one behaviour only. Make them as dumb as possible.
// node.physicsBody = {
// let physicsBody = SKPhysicsBody(circleOfRadius: node.frame.size.width / 2)
// physicsBody.pinned = true
// physicsBody.allowsRotation = false
// physicsBody.affectedByGravity = false
//
// ColliderType.definedCollisions[.shield] = [
// .obstacle,
// .powerUp
// ]
//
// physicsBody.categoryBitMask = ColliderType.shield.rawValue
// physicsBody.contactTestBitMask = ColliderType.obstacle.rawValue
// physicsBody.collisionBitMask = ColliderType.obstacle.rawValue
// return physicsBody
// }()
}
required init?(coder aDecoder: NSCoder) {
fatalError("init(coder:) has not been implemented")
}
func loseShields() {
if let newShieldLevel = ShieldLevel(rawValue: self.currentShieldLevel.rawValue + 1) {
self.currentShieldLevel = newShieldLevel
}
}
func restoreShields() {
self.currentShieldLevel = .full
}
};
Make sure to look at how I changed my components interaction with the entity. You can create a reference Object to Ship Entity Directly. Or you can check weather or not the ShieldComponent has an entity with the entity? property. (beware. it is an optional, so unwrap it.
Once you have the Entity reference you can then search it for other Components and retrieve The using component(ofType:_) property.
eg ship?.component(ofType: RenderComponent.self)
Other than this, I think you have a decent shield component

SpriteKit Shop Scene in game

Any idea how I could implement a shop in my spriteKit game that users could buy different players with coins they have earned in game? any tutorials out there?
This is a multi-step project that took me about 500 loc (more without using .SKS) Here is the link to github finished project: https://github.com/fluidityt/ShopScene
Note, I am using a macOS SpriteKit project because it launches much faster on my computer. Simply change mouseDown() to touchesBegan() to get this to run on iOS.
First edit your GameScene.sks to look like this: (saves a bunch of time coding labels)
Make sure that you name everything EXACTLY as we need this to detect touch:
"entershop", "getcoins", "coinlabel", "levellabel"
This is the main "gameplay" scene and as you click coins++ you get levels and can move around. Clicking the shop will enter the shop.
Here is our GameScene.swift which matches this SKS:
import SpriteKit
class GameScene: SKScene {
let player = Player(costume: Costume.defaultCostume)
lazy var enterNode: SKLabelNode = { return (self.childNode(withName: "entershop") as! SKLabelNode) }()
lazy var coinNode: SKLabelNode = { return (self.childNode(withName: "getcoins" ) as! SKLabelNode) }()
lazy var coinLabel: SKLabelNode = { return (self.childNode(withName: "coinlabel") as! SKLabelNode) }()
lazy var levelLabel: SKLabelNode = { return (self.childNode(withName: "levellabel") as! SKLabelNode) }()
override func didMove(to view: SKView) {
player.name = "player"
if player.scene == nil { addChild(player) }
}
override func mouseDown(with event: NSEvent) {
let location = event.location(in: self)
if let name = atPoint(location).name {
switch name {
case "entershop": view!.presentScene(ShopScene(previousGameScene: self))
case "getcoins": player.getCoins(1)
default: ()
}
}
else {
player.run(.move(to: location, duration: 1))
}
}
override func update(_ currentTime: TimeInterval) {
func levelUp(_ level: Int) {
player.levelsCompleted = level
levelLabel.text = "Level: \(player.levelsCompleted)"
}
switch player.coins {
case 10: levelUp(2)
case 20: levelUp(3)
case 30: levelUp(4)
default: ()
}
}
};
Here you can see that we have a few other things going on not yet introduced: Player and Costume
Player is a spritenode subclass (it doubles as a data model and a UI element). Our player is just a colored square that gets moved around when you click the screen
The player wears something of Costume type, which is just a model that keeps track of data such as price, name, and the texture for the player to display.
Here is Costume.swift:
import SpriteKit
/// This is just a test method should be deleted when you have actual texture assets:
private func makeTestTexture() -> (SKTexture, SKTexture, SKTexture, SKTexture) {
func texit(_ sprite: SKSpriteNode) -> SKTexture { return SKView().texture(from: sprite)! }
let size = CGSize(width: 50, height: 50)
return (
texit(SKSpriteNode(color: .gray, size: size)),
texit(SKSpriteNode(color: .red, size: size)),
texit(SKSpriteNode(color: .blue, size: size)),
texit(SKSpriteNode(color: .green, size: size))
)
}
/// The items that are for sale in our shop:
struct Costume {
static var allCostumes: [Costume] = []
let name: String
let texture: SKTexture
let price: Int
init(name: String, texture: SKTexture, price: Int) { self.name = name; self.texture = texture; self.price = price
// This init simply adds all costumes to a master list for easy sorting later on.
Costume.allCostumes.append(self)
}
private static let (tex1, tex2, tex3, tex4) = makeTestTexture() // Just a test needed to be deleted when you have actual assets.
static let list = (
// Hard-code any new costumes you create here (this is a "master list" of costumes)
// (make sure all of your costumes have a unique name, or the program will not work properly)
gray: Costume(name: "Gray Shirt", texture: tex1 /*SKTexture(imageNamed: "grayshirt")*/, price: 0),
red: Costume(name: "Red Shirt", texture: tex2 /*SKTexture(imageNamed: "redshirt")*/, price: 5),
blue: Costume(name: "Blue Shirt", texture: tex3 /*SKTexture(imageNamed: "blueshirt")*/, price: 25),
green: Costume(name: "Green Shirt", texture: tex4 /*SKTexture(imageNamed: "greenshirt")*/, price: 50)
)
static let defaultCostume = list.gray
};
func == (lhs: Costume, rhs: Costume) -> Bool {
// The reason why you need unique names:
if lhs.name == rhs.name { return true }
else { return false }
}
The design of this struct is twofold.. first is to be a blueprint for a Costume object (which holds the name, price, and texture of a costume), and second it serves as a repository for all of your costumes via a hard-coded static master list property.
The function at the top makeTestTextures() is just an example for this project. I did this just so that way you can copy and paste instead of having to download image files to use.
Here is the Player.swift, which can wear the costumes in the list:
final class Player: SKSpriteNode {
var coins = 0
var costume: Costume
var levelsCompleted = 0
var ownedCostumes: [Costume] = [Costume.list.gray] // FIXME: This should be a Set, but too lazy to do Hashable.
init(costume: Costume) {
self.costume = costume
super.init(texture: costume.texture, color: .clear, size: costume.texture.size())
}
func getCoins(_ amount: Int) {
guard let scene = self.scene as? GameScene else { // This is very specific code just for this example.
fatalError("only call this func after scene has been set up")
}
coins += amount
scene.coinLabel.text = "Coins: \(coins)"
}
func loseCoins(_ amount: Int) {
guard let scene = self.scene as? GameScene else { // This is very specific code just for this example.
fatalError("only call this func after scene has been set up")
}
coins -= amount
scene.coinLabel.text = "Coins: \(coins)"
}
func hasCostume(_ costume: Costume) -> Bool {
if ownedCostumes.contains(where: {$0.name == costume.name}) { return true }
else { return false }
}
func getCostume(_ costume: Costume) {
if hasCostume(costume) { fatalError("trying to get costume already owned") }
else { ownedCostumes.append(costume) }
}
func wearCostume(_ costume: Costume) {
guard hasCostume(costume) else { fatalError("trying to wear a costume you don't own") }
self.costume = costume
self.texture = costume.texture
}
required init?(coder aDecoder: NSCoder) { fatalError() }
};
Player has a lot of functions, but they all could be handled elsewhere in the code. I just went for this design decision, but don't feel like you need to load up your classes with 2 line methods.
Now we are getting to the more nitty-gritty stuff, since we have set up our:
Base scene
Costume list
Player object
The last two things we really need are:
1. A shop model to keep track of inventory
2. A shop scene to display inventory, UI elements, and handle the logic of whether or not you can buy items
Here is Shop.swift:
/// Our model class to be used inside of our ShopScene:
final class Shop {
weak private(set) var scene: ShopScene! // The scene in which this shop will be called from.
var player: Player { return scene.player }
var availableCostumes: [Costume] = [Costume.list.red, Costume.list.blue] // (The green shirt wont become available until the player has cleared 2 levels).
// var soldCostumes: [Costume] = [Costume.defaultCostume] // Implement something with this if you want to exclude previously bought items from the store.
func canSellCostume(_ costume: Costume) -> Bool {
if player.coins < costume.price { return false }
else if player.hasCostume(costume) { return false }
else if player.costume == costume { return false }
else { return true }
}
/// Only call this after checking canBuyCostume(), or you likely will have errors:
func sellCostume(_ costume: Costume) {
player.loseCoins(costume.price)
player.getCostume(costume)
player.wearCostume(costume)
}
func newCostumeBecomesAvailable(_ costume: Costume) {
if availableCostumes.contains(where: {$0.name == costume.name}) /*|| soldCostumes.contains(costume)*/ {
fatalError("trying to add a costume that is already available (or sold!)")
}
else { availableCostumes.append(costume) }
}
init(shopScene: ShopScene) {
self.scene = shopScene
}
deinit { print("shop: if you don't see this message when exiting shop then you have a retain cycle") }
};
The idea was to have the fourth costume only be available at a certain level, but I've run out of time to implement this feature, but most of the supporting methods are there (you just need to implement the logic).
Also, Shop can pretty much just be a struct, but I feel that it's more flexible as a class for now.
Now, before jumping into ShopScene, our biggest file, let me tell you about a couple of design decisions.
First, I'm using node.name to handle touches / clicks. This lets me use the .SKS and the regular SKNode types quickly and easily. Normally, I like to subclass SKNodes and then override their own touchesBegan method to handle clicks. You can do it either way.
Now, in ShopScene you have buttons for "buy", "exit" which I have used as just regular SKLabelNodes; but for the actual nodes that display the costume, I have created a subclass called CostumeNode.
I made CostumeNode so that way it could handle nodes for displaying the costume's name, price, and doing some animations. CostumeNode is just a visual element (unlike Player).
Here is CostumeNode.swift:
/// Just a UI representation, does not manipulate any models.
final class CostumeNode: SKSpriteNode {
let costume: Costume
weak private(set) var player: Player!
private(set) var
backgroundNode = SKSpriteNode(),
nameNode = SKLabelNode(),
priceNode = SKLabelNode()
private func label(text: String, size: CGSize) -> SKLabelNode {
let label = SKLabelNode(text: text)
label.fontName = "Chalkduster"
// FIXME: deform label to fit size and offset
return label
}
init(costume: Costume, player: Player) {
func setupNodes(with size: CGSize) {
let circle = SKShapeNode(circleOfRadius: size.width)
circle.fillColor = .yellow
let bkg = SKSpriteNode(texture: SKView().texture(from: circle))
bkg.zPosition -= 1
let name = label(text: "\(costume.name)", size: size)
name.position.y = frame.maxY + name.frame.size.height
let price = label(text: "\(costume.price)", size: size)
price.position.y = frame.minY - price.frame.size.height
addChildrenBehind([bkg, name, price])
(backgroundNode, nameNode, priceNode) = (bkg, name, price)
}
self.player = player
self.costume = costume
let size = costume.texture.size()
super.init(texture: costume.texture, color: .clear, size: size)
name = costume.name // Name is needed for sorting and detecting touches.
setupNodes(with: size)
becomesUnselected()
}
private func setPriceText() { // Updates the color and text of price labels
func playerCanAfford() {
priceNode.text = "\(costume.price)"
priceNode.fontColor = .white
}
func playerCantAfford() {
priceNode.text = "\(costume.price)"
priceNode.fontColor = .red
}
func playerOwns() {
priceNode.text = ""
priceNode.fontColor = .white
}
if player.hasCostume(self.costume) { playerOwns() }
else if player.coins < self.costume.price { playerCantAfford() }
else if player.coins >= self.costume.price { playerCanAfford() }
else { fatalError() }
}
func becomesSelected() { // For animation / sound purposes (could also just be handled by the ShopScene).
backgroundNode.run(.fadeAlpha(to: 0.75, duration: 0.25))
setPriceText()
// insert sound if desired.
}
func becomesUnselected() {
backgroundNode.run(.fadeAlpha(to: 0, duration: 0.10))
setPriceText()
// insert sound if desired.
}
required init?(coder aDecoder: NSCoder) { fatalError() }
deinit { print("costumenode: if you don't see this then you have a retain cycle") }
};
Finally we have ShopScene, which is the behemoth file. It handles the data and logic for not only showing UI elements, but also for updating the Shop and Player models.
import SpriteKit
// Helpers:
extension SKNode {
func addChildren(_ nodes: [SKNode]) { for node in nodes { addChild(node) } }
func addChildrenBehind(_ nodes: [SKNode]) { for node in nodes {
node.zPosition -= 2
addChild(node)
}
}
}
func halfHeight(_ node: SKNode) -> CGFloat { return node.frame.size.height/2 }
func halfWidth (_ node: SKNode) -> CGFloat { return node.frame.size.width/2 }
// MARK: -
/// The scene in which we can interact with our shop and player:
class ShopScene: SKScene {
lazy private(set) var shop: Shop = { return Shop(shopScene: self) }()
let previousGameScene: GameScene
var player: Player { return self.previousGameScene.player } // The player is actually still in the other scene, not this one.
private var costumeNodes = [CostumeNode]() // All costume textures will be node-ified here.
lazy private(set) var selectedNode: CostumeNode? = {
return self.costumeNodes.first!
}()
private let
buyNode = SKLabelNode(fontNamed: "Chalkduster"),
coinNode = SKLabelNode(fontNamed: "Chalkduster"),
exitNode = SKLabelNode(fontNamed: "Chalkduster")
// MARK: - Node setup:
private func setUpNodes() {
buyNode.text = "Buy Costume"
buyNode.name = "buynode"
buyNode.position.y = frame.minY + halfHeight(buyNode)
coinNode.text = "Coins: \(player.coins)"
coinNode.name = "coinnode"
coinNode.position = CGPoint(x: frame.minX + halfWidth(coinNode), y: frame.minY + halfHeight(coinNode))
exitNode.text = "Leave Shop"
exitNode.name = "exitnode"
exitNode.position.y = frame.maxY - buyNode.frame.height
setupCostumeNodes: do {
guard Costume.allCostumes.count > 1 else {
fatalError("must have at least two costumes (for while loop)")
}
for costume in Costume.allCostumes {
costumeNodes.append(CostumeNode(costume: costume, player: player))
}
guard costumeNodes.count == Costume.allCostumes.count else {
fatalError("duplicate nodes found, or nodes are missing")
}
let offset = CGFloat(150)
func findStartingPosition(offset: CGFloat, yPos: CGFloat) -> CGPoint { // Find the correct position to have all costumes centered on screen.
let
count = CGFloat(costumeNodes.count),
totalOffsets = (count - 1) * offset,
textureWidth = Costume.list.gray.texture.size().width, // All textures must be same width for centering to work.
totalWidth = (textureWidth * count) + totalOffsets
let measurementNode = SKShapeNode(rectOf: CGSize(width: totalWidth, height: 0))
return CGPoint(x: measurementNode.frame.minX + textureWidth/2, y: yPos)
}
costumeNodes.first!.position = findStartingPosition(offset: offset, yPos: self.frame.midY)
var counter = 1
let finalIndex = costumeNodes.count - 1
// Place nodes from left to right:
while counter <= finalIndex {
let thisNode = costumeNodes[counter]
let prevNode = costumeNodes[counter - 1]
thisNode.position.x = prevNode.frame.maxX + halfWidth(thisNode) + offset
counter += 1
}
}
addChildren(costumeNodes)
addChildren([buyNode, coinNode, exitNode])
}
// MARK: - Init:
init(previousGameScene: GameScene) {
self.previousGameScene = previousGameScene
super.init(size: previousGameScene.size)
}
required init?(coder aDecoder: NSCoder) { fatalError("init(coder:) has not been implemented")}
deinit { print("shopscene: if you don't see this message when exiting shop then you have a retain cycle") }
// MARK: - Game loop:
override func didMove(to view: SKView) {
anchorPoint = CGPoint(x: 0.5, y: 0.5)
setUpNodes()
select(costumeNodes.first!) // Default selection.
for node in costumeNodes {
if node.costume == player.costume { select(node) }
}
}
// MARK: - Touch / Click handling:
private func unselect(_ costumeNode: CostumeNode) {
selectedNode = nil
costumeNode.becomesUnselected()
}
private func select(_ costumeNode: CostumeNode) {
unselect(selectedNode!)
selectedNode = costumeNode
costumeNode.becomesSelected()
if player.hasCostume(costumeNode.costume) { // Wear selected costume if owned.
player.costume = costumeNode.costume
buyNode.text = "Bought Costume"
buyNode.alpha = 1
}
else if player.coins < costumeNode.costume.price { // Can't afford costume.
buyNode.text = "Buy Costume"
buyNode.alpha = 0.5
}
else { // Player can buy costume.
buyNode.text = "Buy Costume"
buyNode.alpha = 1
}
}
// I'm choosing to have the buttons activated by searching for name here. You can also
// subclass a node and have them do actions on their own when clicked.
override func mouseDown(with event: NSEvent) {
guard let selectedNode = selectedNode else { fatalError() }
let location = event.location(in: self)
let clickedNode = atPoint(location)
switch clickedNode {
// Clicked empty space:
case is ShopScene:
return
// Clicked Buy / Leave:
case is SKLabelNode:
if clickedNode.name == "exitnode" { view!.presentScene(previousGameScene) }
if clickedNode.name == "buynode" {
// guard let shop = shop else { fatalError("where did the shop go?") }
if shop.canSellCostume(selectedNode.costume) {
shop.sellCostume(selectedNode.costume)
coinNode.text = "Coins: \(player.coins)"
buyNode.text = "Bought"
}
}
// Clicked a costume:
case let clickedCostume as CostumeNode:
for node in costumeNodes {
if node.name == clickedCostume.name {
select(clickedCostume)
}
}
default: ()
}
}
};
There's a lot to digest here, but pretty much everything happens in mouseDown() (or touchesBegan for iOS). I had no need for update() or other every-frame methods.
So how did I make this? The first step was planning, and I knew there were several design decisions to make (which may not have been the best ones).
I knew that I needed a certain set of data for my player and shop inventory, and that those two things would also need UI elements.
I chose to combine the data + UI for Player by making it a Sprite subclass.
For the shop, I knew that the data and UI elements would be pretty intense, so I separated them (Shop.swift handling the inventory, Costume.swift being a blueprint, and CostumeNode.swift handling most of the UI)
Then, I needed to link the data to the UI elements, which meant that I needed a lot of logic, so I decided to make a whole new scene to handle logic pertaining just to entering and interacting with the shop (it handles some graphics stuff too).
This all works together like this:
Player has a costume and coins
GameScene is where you collect new coins (and levels)
ShopScene handles most of the logic for determining which UI elements to display, while CostumeNode has the functions for animating the UI.
ShopScene also provides the logic for updating the Player's texture (costume) and coins through Shop.
Shop just manages the player inventory, and has the data with which to populate more CostumeNodes
When you are done with the shop, your GameScene instance is immediately resumed where you left off prior to entering
So the question you may have is, "how do I use this in my game??"
Well, you aren't going to be able to just copy and paste it. A lot of refactoring will likely be needed. The takeaway here is to learn the basic system of the different types of data, logic, and actions that you will need to create, present, and interact with a shop.
Here is the github again:
https://github.com/fluidityt/ShopScene

Resources