Orleans: Right way to separate Grain types within single cluster - orleans

I have several Grain types in my Orleans project. Lets say Grains are A,B,C,D,E.
I have single Silo executable which i run on 2 machines (clustering via AdoNet).
So, they communicate and ping each other and I able to consume grains through client.
Now I want to run Silo executables on several machines on a network in such way that grains of types A,B,C will be hosted on machine 1 while D and E are hosted on machine 2.
Ideally, within single executable (project) using runtime-configuration.
I tried, as written on article below, to just skip implementation types referencing of grains D and E, leaving only interfaces, but always get Silo fault with error
Cannot find an implementation class for grain interface: ... Make sure the grain assembly was correctly deployed and loaded in the silo.
Also the note is that grain A consumes grains D and E, So, when activating grain A, always getting silo fault.
I have read this article from top to bottom and backwards but still cannot understand how to distinguish what grain types should be run on particular silo instance.
https://dotnet.github.io/orleans/Documentation/clusters_and_clients/heterogeneous_silos.html

Related

Share storage/volume between worker nodes in Kubernetes?

Is it possible to have a centralized storage/volume that can be shared between two pods/instances of an application that exist in different worker nodes in Kubernetes?
So to explain my case:
I have a Kubernetes cluster with 2 worker nodes. In each one of these I have 1 instance of app X running. This means I have 2 instances of app X running totally at the same time.
Both instances subscribe on the topic topicX, that has 2 partitions, and are part of a consumer group in Apache Kafka called groupX.
As I understand it the message load will be split among the partitions, but also among the consumers in the consumer group. So far so good, right?
So to my problem:
In my whole solution I have a hierarchy division with the unique constraint by country and ID. Each combination of country and ID has a pickle model (python Machine Learning Model), which is stored in a directory accessed by the application. For each combination of a country and ID I receive one message per minute.
At the moment I have 2 countries, so to be able to scale properly I wanted to split the load between two instances of app X, each one handling its own country.
The problem is that with Kafka the messages can be balanced between the different instances, and to access the pickle-files in each instance without know what country the message belongs to, I have to store the pickle-files in both instances.
Is there a way to solve this? I would rather keep the setup as simple as possible so it is easy to scale and add a third, fourth and fifth country later.
Keep in mind that this is an overly simplified way of explaining the problem. The number of instances is much higher in reality etc.
Yes. It's possible if you look at this table any PV (Physical Volume) that supports ReadWriteMany will help you accomplish having the same data store for your Kafka workers. So in summary these:
AzureFile
CephFS
Glusterfs
Quobyte
NFS
VsphereVolume - (works when pods are collocated)
PortworxVolume
In my opinion, NFS is the easiest to implement. Note that Azurefile, Quobyte, and Portworx are paid solutions.

Orleans cluster communication

I am trying to figure out how much of a perf-hit will be if hosting 2 different Orleans grains in the same cluster vs deploying the 2 different grains in different clusters within the same Virtual Network. Can someone give some guidance on this and also how will the 2 grains can talk to each other in this scenario.
Currently out of the box Orleans only supports direct grain to grain communication within the same cluster. If you have 2 different clusters (2 different Azure Deployments) you need to add a layer of front ends and call via front ends. For example, grain a in cluster A will make an HTTP call to a front end in cluster B which will forward to grain b in his cluster B.
We are currently in the process of adding support for multi clustering in Orleans, which will also include geo-distributed clusters (different data centers). You can find a lot of details here: https://github.com/dotnet/orleans/issues/948
Some ongoing works is: https://github.com/dotnet/orleans/milestones/Multi-Cluster

Orleans Architecture Design - Silo projects combined or separate?

There is an IoT data collection project, and an IoT data processing project. They are separately developed and maintained. However, it would be beneficial to share common grains between them in an Orleans silo (or silo cluster). How would the architecture look in a self-hosted scenario - a monolithic silo with references to both projects for communication within the silo or two separate silos communicating externally? If in a single silo, can a silo dynamically discover grain .dll's?
There will probably be better answers, but until then:
There are some trade-offs. Performance-wise, it's better to spread all your grains (of all services) across the cluster. This way every grain communicates with other grains via Orleans infrastructure (I guess that's binary serialized messages through tcp), without any additional overhead. But when every service (or project) has it's own silo, you will need a gateway - HTTP listener maybe - in addition to Orleans. However, in the first example, your services become coupled. You cannot deploy a new version of a service, as long as there is a silo running an older version of it (otherwise, there might be 2 grains of the same entity). But if you shut down that silo, you are shutting down the rest of the services. This is a very non trivial issue.
If in a single silo, can a silo dynamically discover grain .dll's
Not sure what you mean. When a silo boots up, it recursively searches for dlls inside it's folder, and if it finds grains, loads them.

Erlang clusters

I'm trying to implement a cluster using Erlang as the glue that holds it all together. I like the idea that it creates a fully connected graph of nodes, but upon reading different articles online, it seems as though this doesn't scale well (having a max of 50 - 100 nodes). Did the developers of OTP impose this limitation on purpose? I do know that you can setup nodes to have explicit connections only as well as have hidden nodes, etc. But, it seems as though the default out-of-the-box setup isn't very scalable.
So to the questions:
If you had 5 nodes (A, B, C, D, E) that all had explicit connections such that A-B-C-D-E. Does Erlang/OTP allow A to talk directly to E or does A have to pass messages from B through D to get to E, and thus that's the reason for the fully connected graph? Again, it makes sense but it doesn't scale well from what I've seen.
If one was to try and go for a scalable and fault-tolerant system, what are your options? It seems as though, if you can't create a fully connected graph because you have too many nodes, the next best thing would be to create a tree of some kind. But, this doesn't seem very fault-tolerant because if the root or any parent of children nodes dies, you would lose a significant portion of your cluster.
In looking into supervisors and workers, all of the examples I've seen apply this to processes on a single node. Could it be applied to a cluster of nodes to help implement fault-tolerance?
Can nodes be part of several clusters?
Thanks for your help, if there is a semi-recent website or blogpost (roughly 1-year old) that I've missed, I'd be happy to look at those. But, I've scoured the internet pretty well.
Yes, you can send messages to a process on any remote node in a cluster, for example, by using its process identifier (pid). This is called location transparency. And yes, it scales well (see Riak, CouchDB, RabbitMQ, etc).
Note that one node can run hundred thousands of processes. Erlang has proven to be very scalable and was built for fault tolerance. There are other approaches to build bigger, e.g. SOA approach of CloudI (see comments). You also could build clusters that use hidden nodes if you really really need to.
At the node level you would take a different approach, for example, build identical nodes that are easy to replace if they fail and the work is taken over by the remaining nodes. Check out how Riak handles this (look into riak_core and check the blog post Introducing Riak Core).
Nodes can leave and enter a cluster but cannot be part of multiple clusters at the same time. Connected nodes share one cluster cookie which is used to identify connected nodes. You can set the cookie while the VM is running (see Distributed Erlang).
Read http://learnyousomeerlang.com/ for greater good.
The distribution protocol is about providing robustness, not scalability. What you want to do is to group your cluster into smaller areas and then use connections, which are not distribution in Erlang but in, say, TCP sessions. You could run 5 groups of 10 machines each. This means the 10 machines have seamless Pid distribution: you can call a pid on another machine. But distributing to another group means you can't seamlessly address the group like that.
You generally want some kind of "route reflection" as in BGP.
1) I think you need a direct connection between nodes to communicate between processes. This does, however, mean that you don't need persistent connections between all the nodes if two will never communicate (say if they're only workers, not coordinators).
2) You can create a not-fully-connected graph of erlang nodes. The documentation is hard to find, and comes with problems - you disable the global system which handles global names in the cluster, so you have to do everything by locally registered names, or locally registered names on remote nodes. Or just use Pids, as they work too. To start an erlang node like this, use erl ... -connect_all false .... I hope you know what you're up to, as I couldn't trust myself to do that.
It also turns out that a not-fully-connected graph of erlang nodes is a current research topic. The RELEASE Project is currently working on exactly that, and have come up with a concept of S-groups, which are essentially fully-connected groups. However, nodes can be members of more than one S-group and nodes in separate s-groups don't have to be fully connected but can establish the connections they need on demand to do direct node-to-node communication. It's worth finding presentations of theirs because the research is really interesting.
Another thing worth pointing out is that several people have found that you can get up to 150-200 nodes in a fully-connected cluster. Do you really have a use-case for more nodes than that? Surely 150-200 incredibly beefy computers would do most things you could throw at them, unless you have a ridiculous project to do.
3) While you can't start processes on a different node using gen_server:start_link/3,4, you can certainly call servers on a foreign node very easily. It seems that they've overlooked being able to start servers on foreign nodes, but there's probably good reason for it - such as a ridiculous number of error cases.
4) Try looking at hidden nodes, and at having a not-fully-connected cluster. They should allow you to group nodes as you see fit.
TL;DR: Scaling is hard, let's go shopping.
There are some good answers already, so I'm trying to be simple.
1) No, if A and E are not connected directly, A cannot talk to E. The distribution protocol runs on direct TCP connection - no routing included.
2) I think a tree structure is good enough - trade-offs always exist.
3) There's no 'supervisor for nodes', but erlang:monitor_node is your friend.
4) Yes. A node can talk to nodes from different 'clusters'. In the local node, use erlang:set_cookie(OtherNode, OtherCookie) to access a remote node with a different cookie.
1)
yes. they talk to each other
2) 3) and 4)
Generally speaking, when building a scalable and fault tolerant system, you would want, or more over, need to divide the work load to different "regions" or "clusters". Supervisor/Worker model has this envisioned thus the topology. What you need is a few processes coordinating work between clusters and all workers within one single cluster will talk to each other to balance out within group.
As you can see, with this topology, the "limitation" is not really a limitation as long as you divide your tasks carefully and in a balanced fashion. Personally, I believe a tree like structure for supervisor processes is not avoidable in large scale systems, and this is the practice I'm following. Reasons are vary but boils down to scalability, fault tolerance as fall back policy implementation, maintenance need and portability of the clusters.
So in conclusion,
2) use a tree-like topology for your supervisors. let workers explicitly connect to each other and talk within their own domain with the supervisors.
3) while this is the native designed environment, as I presume, I'm pretty sure a supervisor can talk to a worker on a different machine. I would not suggest this as fault tolerance can be hell in remote worker scenario.
4) you should never let a node be part of two different cluster at the same moment. You can switch it from one cluster to another though.

Is this the right way of building an Erlang network server for multi-client apps?

I'm building a small network server for a multi-player board game using Erlang.
This network server uses a local instance of Mnesia DB to store a session for each connected client app. Inside each client's record (session) stored in this local Mnesia, I store the client's PID and NODE (the node where a client is logged in).
I plan to deploy this network server on at least 2 connected servers (Node A & B).
So in order to allow a Client A who is logged in on Node A to search (query to Mnesia) for a Client B who is logged in on Node B, I replicate the Mnesia session table from Node A to Node B or vise-versa.
After Client A queries the PID and NODE of the Client B, then Client A and B can communicate with each other directly.
Is this the right way of establishing connection between two client apps that are logged-in on two different Erlang nodes?
Creating a system where two or more nodes are perfectly in sync is by definition impossible. In practice however, you might get close enough that it works for your particular problem.
You don't say the exact reason behind running on two nodes, so I'm going to assume it is for scalability. With many nodes, your system will also be more available and fault-tolerant if you get it right. However, the problem could be simplified if you know you only ever will run in a single node, and need the other node as a hot-slave to take over if the master is unavailable.
To establish a connection between two processes on two different nodes, you need some global addressing(user id 123 is pid<123,456,0>). If you also care about only one process running for User A running at a time, you also need a lock or allow only unique registrations of the addressing. If you also want to grow, you need a way to add more nodes, either while your system is running or when it is stopped.
Now, there are already some solutions out there that helps solving your problem, with different trade-offs:
gproc in global mode, allows registering a process under a given key(which gives you addressing and locking). This is distributed to the entire cluster, with no single point of failure, however the leader election (at least when I last looked at it) works only for nodes that was available when the system started. Adding new nodes requires an experimental version of gen_leader or stopping the system. Within your own code, if you know two players are only going to ever talk to each other, you could start them on the same node.
riak_core, allows you to build on top of the well-tested and proved architecture used in riak KV and riak search. It maps the keys into buckets in a fashion that allows you to add new nodes and have the keys redistributed. You can plug into this mechanism and move your processes. This approach does not let you decide where to start your processes, so if you have much communication between them, this will go across the network.
Using mnesia with distributed transactions, allows you to guarantee that every node has the data before the transaction is commited, this would give you distribution of the addressing and locking, but you would have to do everything else on top of this(like releasing the lock). Note: I have never used distributed transactions in production, so I cannot tell you how reliable they are. Also, due to being distributed, expect latency. Note2: You should check exactly how you would add more nodes and have the tables replicated, for example if it is possible without stopping mnesia.
Zookeper/doozer/roll your own, provides a centralized highly-available database which you may use to store the addressing. In this case you would need to handle unregistering yourself. Adding nodes while the system is running is easy from the addressing point of view, but you need some way to have your application learn about the new nodes and start spawning processes there.
Also, it is not necessary to store the node, as the pid contains enough information to send the messages directly to the correct node.
As a cool trick which you may already be aware of, pids may be serialized (as may all data within the VM) to a binary. Use term_to_binary/1 and binary_to_term/1 to convert between the actual pid inside the VM and a binary which you may store in whatever accepts binary data without mangling it in some stupid way.

Resources