I'm using an app for face redaction that doesn't allow access to the source code but only allows me to pass pixel values for red, green and blue channel upon which it creates a matrix with the same average RGB values for every ROI pixel value. For eg. if I give Red=32,Blue=123 and Green=233 it will assign these RGB values for every pixel of the ROI and then draws a colored patch on the face.
So I was wondering is there a general combination of RGB values of a pixel to distort it and make it look like it's blurred. I can also set the opacity value in the app.
Thanks.
Related
I want to normalize several images in imageJ using the mean pixel value in a ROI, so that after normalization the mean in this ROI has the same value in all the images. How can I do it? Thanks
It is hard to say with out a particular example but a priory I would select the ROI and press control + Mto measure the region. If it is grey scale image you should obtain the gray mean of the grey pixels. You can use then this value to divide all the pixels in you image using Divide function under the Process > Math menu. If you calculate the mean for each image and use that value to divide each corresponding image, your ROI should have the same mean value for all ROI in your pictures.
I hope it helps!
I wanna calculate the perceived brightness of an image and classify the image into dark, neutral and bright. And I find one problem here!
And I quote Lakshmi Narayanan's comment below. I'm confused with this method. What does "the average of the hist values from 0th channel" mean here? the 0th channel refer to gray image or value channel in hsv image? Moreover, what's the theory of that method?
Well, for such a case, I think the hsv would be better. Or try this method #2vision2. Compute the laplacian of the gray scale of the image. obtain the max value using minMacLoc. call it maxval. Estimate your sharpness/brightness index as - (maxval * average V channel values) / (average of the hist values from 0th channel), as said above. This would give you certain values. low bright images are usually below 30. 30 - 50 can b taken as ok images. and above 50 as bright images.
If you have an RGB color image you can get the brightness by converting it to another color space that separates color from intensity information like HSV or LAB.
Gray images already show local "brightness" so no conversion is necessary.
If an image is perceived as bright depends on many things. Mainly your display device, reference images, contrast, human...
Using a few intensity statistics values should give you an ok classification for one particular display device.
I would like to use GPUImage's Histogram Equalization filter (link to .h) (link to .m) for a camera app. I'd like to use it in real time and present it as an option to be applied on the live camera feed. I understand this may be an expensive operation and cause some latency.
I'm confused about how this filter works. When selected in GPUImage's example project (Filter Showcase) the filter shows a very dark image that is biased toward red and blue which does not seem to be the way equalization should work.
Also what is the difference between the histogram types kGPUImageHistogramLuminance and kGPUImageHistogramRGB? Filter Showcase uses kGPUImageHistogramLuminance but the default in the init is kGPUImageHistogramRGB. If I switch Filter Showcase to kGPUImageHistogramRGB, I just get a black screen. My goal is an overall contrast optimization.
Does anyone have experience using this filter? Or are there current limitations with this filter that are documented somewhere?
Histogram equalization of RGB images is done using the Luminance as equalizing the RGB channels separately would render the colour information useless.
You basically convert RGB to a colour space that separates colour from intensity information. Then equalize the intensity image and finally reconvert it to RGB.
According to the documentation: http://oss.io/p/BradLarson/GPUImage
GPUImageHistogramFilter: This analyzes the incoming image and creates
an output histogram with the frequency at which each color value
occurs. The output of this filter is a 3-pixel-high, 256-pixel-wide
image with the center (vertical) pixels containing pixels that
correspond to the frequency at which various color values occurred.
Each color value occupies one of the 256 width positions, from 0 on
the left to 255 on the right. This histogram can be generated for
individual color channels (kGPUImageHistogramRed,
kGPUImageHistogramGreen, kGPUImageHistogramBlue), the luminance of the
image (kGPUImageHistogramLuminance), or for all three color channels
at once (kGPUImageHistogramRGB).
I'm not very familiar with the programming language used so I can't tell if the implementation is correct. But in the end, colours should not change too much. Pixels should just become brighter or darker.
I have images containing gray gradations and one another color. I'm trying to convert image to grayscale with opencv, also i want the colored pixels in the source image to become rather light in the output grayscale image, independently to the color itself.
The common luminosity formula is smth like 0.299R+0.587G+0.114B, according to opencv docs, so it gives very different luminosity to different colors.
I consider the solution is to set some custom weights in the luminosity formula.
Is it possible in opencv? Or maybe there is a better way to perform such selective desaturation?
I use python, but it doesnt matter
This is the perfect case for the transform() function. You can treat grayscale conversion as applying a 1x3 matrix transformation to each pixel of the input image. The elements in this matrix are the coefficients for the blue, green, and red components, respectively since OpenCV images are BGR by default.
im = cv2.imread(image_path)
coefficients = [1,0,0] # Gives blue channel all the weight
# for standard gray conversion, coefficients = [0.114, 0.587, 0.299]
m = np.array(coefficients).reshape((1,3))
blue = cv2.transform(im, m)
So you have custom formula,
Load source,
Mat src=imread(fileName,1);
Create gray image,
Mat gray(src.size(),CV_8UC1,Scalar(0));
Now in a loop, access BGR pixel of source like,
Vec3b bgrPixel=src.at<cv::Vec3b>(y,x); //gives you the BGR vector of type cv::Vec3band will be in row, column order
bgrPixel[0]= Blue//
bgrPixel[1]= Green//
bgrPixel[2]= Red//
Calculate new gray pixel value using your custom equation.
Finally set the pixel value on gray image,
gray.at<uchar>(y,x) = custom intensity value // will be in row, column order
I have a image and i want to detect a blue rectange in it. My teacher told me that:
convert it to HSV color model
define a thresh hold to make it become a binary image with the color we want to detect
So why do we do that ? why don't we direct thresh hold the rgb image ?
thanks for answer
You can find the answer to your question here
the basic summary is that HSV is better for object detection,
OpenCV usually captures images and videos in 8-bit, unsigned integer, BGR format. In other words, captured images can be considered as 3 matrices, BLUE,RED and GREEN with integer values ranges from 0 to 255.
How BGR image is formed
In the above image, each small box represents a pixel of the image. In real images, these pixels are so small that human eye cannot differentiate.
Usually, one can think that BGR color space is more suitable for color based segmentation. But HSV color space is the most suitable color space for color based image segmentation. So, in the above application, I have converted the color space of original image of the video from BGR to HSV image.
HSV color space is consists of 3 matrices, 'hue', 'saturation' and 'value'. In OpenCV, value range for 'hue', 'saturation' and 'value' are respectively 0-179, 0-255 and 0-255. 'Hue' represents the color, 'saturation' represents the amount to which that respective color is mixed with white and 'value' represents the amount to which that respective color is mixed with black.
According to http://en.wikipedia.org/wiki/HSL_and_HSV#Use_in_image_analysis :
Because the R, G, and B components of an object’s color in a digital image are all correlated with the amount of light hitting the object, and therefore with each other, image descriptions in terms of those components make object discrimination difficult. Descriptions in terms of hue/lightness/chroma or hue/lightness/saturation are often more relevant.
Also some good info here
The HSV color space abstracts color (hue) by separating it from saturation and pseudo-illumination. This makes it practical for real-world applications such as the one you have provided.
R, G, B in RGB are all co-related to the color luminance( what we loosely call intensity),i.e., We cannot separate color information from luminance. HSV or Hue Saturation Value is used to separate image luminance from color information. This makes it easier when we are working on or need luminance of the image/frame. HSV also used in situations where color description plays an integral role.
Cheers