How does Eye tracking calibration helps the gaze estimation? - calibration

I am asked to create calibration for the eye-tracking algorithm. However, I still don't really understand about how does the calibration helps in making our gaze estimation more accurate, as well as how calibration in eye-tracking actually works. I have read https://www.tobiidynavox.com/support-training/eye-tracker-calibration/, as well as https://developer.tobii.com/community/forums/topic/explain-calibration/, but I still don't fully understand it. I will appreciate if somebody can explain it to me.
Thank you

In the answer below, I assume that you are referring to standard pupil-centre corneal-reflection video-oculography rather than any other form of eye tracking technology.
In eye tracking, calibration is the process that transforms the coordinates of features located in a two dimensional still video frame of the eye into gaze coordinates (i.e. coordinates that are related to the world being observed). For example, let's say your eye tracker produces a 400 × 400 pixel image of the eye, and the subject is looking at a screen that is 1024 × 768 pixels in size, some distance in front of them. The calibration process needs to relate coordinates in the eye image to where the person is looking (i.e. gazing) at on the display screen. This process is not trivial: just because the pupil is centred in the eye image does not mean that the person is looking at the centre of the display in the world, for example. And the position of the pupil centre could move within the eye image even though the direction of gaze is held constant in the world. This is why we track the centre of the pupil and the corneal reflection, as the vector linking the two is robust to translation of the eye within the image that occurs in the absence of a gaze rotation.
A standard way to do this mapping is via relatively straightforward 2D non-linear regression: you move a target at known coordinates on the display and ask the participant to fixate steadily on each, while recording the location of the pupil centre and corneal reflection in the eye image. The calibration process will map the vector linking the pupil centre and the corneal reflection to the corresponding known gaze coordinates. This produces a regression solution that allows you to map intermediate locations to their interpolated gaze coordinates.
(An alternative, or supplementary, approach is model-based rather than regression-based, but let's not go there right now.)
So in essence, calibration doesn't improve gaze estimation, it provides gaze estimation. Without first doing a calibration, all you are doing is tracking the movements of features (the pupil and corneal reflection) within a relatively arbitrary image of the eye. Until calibration is carried out, you have no idea at that stage where that eye is actually pointing in the world.
Having said all that, this is not at all a coding-based question (or answer), so not actually sure that StackOverflow is the ideal venue to be asking this.

Related

Reconstruct 3D points from two images, given camera movement

I am trying to reconstruct the real-world coordinates of 3D points from two images taken from the same camera. The camera is not calibrated, but the movement (translation and rotation) is known. In short:
Requirement:
No calibration
Extra constraints other than image point correspondences:
Known camera translation and rotation
Same camera used in all views
I understand that, from image point correspondences alone, a scene can be reconstructed only up to a projective transformation. With more constraints, an affine or similarity reconstruction may be done. In my case, I need a similarity reconstruction.
Given the above constraints, is a similarity reconstruction possible? If possible, how should I go about doing it?
I have tried to attack the problem from a few angles. Since I am not mathematically fluent, I try to use opencv as much as possible.
findFundamentalMat() from the two images, hopefully extract the two camera matrices somehow, then triangulatePoints(). As you could have guessed, I got stuck in the middle, unable to obtain camera matrices from fundamental matrix.
The textbook "Multiple View Geometry in Computer Vision" (by Hartley and Zisserman) gives an expression (p.256, Result 9.14) that expresses the camera matrices in terms of fundamental matrix and one of the epipoles. However, without knowing the camera's intrinsic parameters (requirement: no calibration), I don't see how I can get the epipole.
I also try to treat my problem as a stereo system and use opencv's stereo*** functions. But they all seem to require human intervention to calibrate, which violates my requirement.
So, that's why I ask the question here today. The key is still, given those extra constraints, is a similarity reconstruction possible? I am not smart enough to understand the wealth of knowledge out there, and not able to come up with my own solution. Any help is appreciated.

OpenCV - calibrate camera using static images in water

I have a photocamera mounted vertically under water in a tank, looking downwards.
There is a flat grid on the bottom of the tank (approx 2m away from the camera).
I want to be able to place markers on the bottom, and use computer vision to know their real life exact position.
So, I need to map from pixels to mm.
If I am not mistaken, cv::calibrateCamera(...) does just this, but is dependent on moving a pattern in front of the camera.
I have just static pictures of the scene, and the camera never moves in relation to the grid. Thus, I have only a "single" image to find the parameters.
How can I do this using the grid?
Thank you.
Interesting problem! The "cute" part is the effect on the intrinsic parameters of the refraction at the water-glass interface, namely to increase the focal length (or, conversely, to reduce the field of view) compared to the same lens in air. In theory, you could calibrate in air and then correct for the difference in refraction index, but calibrating directly in water is likely to give you more accurate results.
Do know your accuracy requirements? And have you verified that your lens/sensor combination is adequate to meet them (with an adequate margin)? To answer the question you need to estimate (either by calculation from the lens and sensor specifications, or experimentally using a resolution chart) whether you can resolve in an image the minimal distances required by your application.
From the wording of your question I think that you are interested only in measurements on a single plane. So you only need to (a) remove the nonlinear (barrel or pincushion) lens distortion and (b) estimate the homography between the plane of interest and the image. Once you have the latter, you can directly convert from undistorted image coordinates to world ones by matrix multiplication. Additionally if (as I imagine) the plane of interest is roughly parallel to the image plane, you should not have any problem keeping the entire field-of-view in focus.
Of course, for all of this to work as expected, you should make sure that the tank bottom is really flat, within the measurement tolerances of your application. Otherwise you are really dealing with a 3D problem, and need to modify your procedures accordingly.
The actual procedure depends a lot on the size of the tank, which you don't indicate clearly. If it's small enough that it is practical to manufacture a chessboard-like movable calibration target, by all means go for it. You may want to take a look at this other answer for suggestions. In the following I'll discuss the more interesting case in which your tank is large, e.g. the size of a swimming pool.
I'd proceed by sticking calibration markers in a regular grid at the pool bottom. I'd probably choose checker-like markers like these, maybe printing them myself with a good laser printer on plastic with an adhesive backing (assuming you can leave them in place forever). You should plan on having quite a few of them, say, an 8x8 or 10x10 grid, covering as much as possible of the field of view of the camera in its operating position and pose. To help with lining up the grid nicely you might use a laser line projector of suitable fan angle, or a laser pointer attached to a rotating support. Note carefully that it is not necessary that they be affixed in a precise X-Y grid (which may be complicated, depending on the size of your pool), only that their positions with respect any arbitrarily chosen (but fixed) three of them be known. In other words, you can attach them to the bottom approximately in a grid, then measure the distances of three extreme corners from each other as accurately as you can, thus building a base triangle, then measure the distances of all the other corners from the vertices of the triangle, and finally reconstruct their true positions with a bit of trigonometry. It's basically a surveying problem and, depending on your accuracy requirements and budget, you may want to enroll a local friendly professional surveyor (and their tools) to get it done as precisely as necessary.
Once you have your grid, you can fill the pool, get your camera, focus and f-stop the lens as needed for the application. From now on you may not touch the focus and f-stop ever again, under penalty of miscalibrating - exposure can only be controlled by the exposure time, so make sure to have enough light. Disable any and all auto-focus and auto-iris functions, if any. If the camera has a non-rigid lens mount (e.g. a DLSR), you'll need some kind of mechanical rig to ensure that the lens-body pair stay rigid. F-stop as close as you can, given the available lighting and sensor, so to have a fair bit of depth of field available. Then take several photos (~ 10) of the grid, moving and rotating the camera, and going a bit closer and farther away than your expected operating distance from the plane. You'll want to "see" in some images some significant perspective foreshortening of the grid - this is needed to accurately calibrate the focal length. Avoid JPG and any other lossy compression format when storing the images - use lossless PNG or TIFF.
Once you have the images, you can manually mark and identify the checker markers in the images. For a once-off project like this I would not bother with automatic identification, just do it manually (e.g. in Matlab, or even in Photoshop or Gimp). To help identify the markers, you could, e.g. print a number next to them. Once you have the manual marks, you can refine them automatically to subpixel accuracy, e.g. using cv::findCornerSubpix.
You're almost done. Feed the "reference" measured position of the real corners, and the observed ones in all images, to your favorite camera calibration routine, e.g. cv::calibrateCamera. You use the nominal focal length of the camera (converted to pixels) for an initial estimate, along with null distortion. If all goes well, you will obtain the camera intrinsic parameters, which you will keep, and the camera poses at all images, which you'll throw away.
Now you can mount the camera in your final setup, as needed by your application, and take one further image of the grid. Mark and refine the corner positions as before. Undistort their image positions using the distortion parameters returned by the calibration. Finally compute the homography between the reference positions of the real markers (in meters) and their undistorted positions, and you're done.
HTH
To calibrate the camera you do need multiple images of the checkerboard (or one of the other patterns found here). What you can do, is calibrate the camera outside of the water or do a calibration sequence once.
Once you have that information (focal length, center of lens, distortion, etc). You can use the solvePNP function to estimate the orientation of a single board. This estimation provides you with a distance from the camera to the board.
A completely different alternative could be to find what kind of lens the camera uses and manually fill in the data. I've not tried this, so I'm uncertain how well this would work.

How to verify the correctness of calibration of a webcam?

I am totally new to camera calibration techniques... I am using OpenCV chessboard technique... I am using a webcam from Quantum...
Here are my observations and steps..
I have kept each chess square side = 3.5 cm. It is a 7 x 5 chessboard with 6 x 4 internal corners. I am taking total of 10 images in different views/poses at a distance of 1 to 1.5 m from the webcam.
I am following the C code in Learning OpenCV by Bradski for the calibration.
my code for calibration is
cvCalibrateCamera2(object_points,image_points,point_counts,cvSize(640,480),intrinsic_matrix,distortion_coeffs,NULL,NULL,CV_CALIB_FIX_ASPECT_RATIO);
Before calling this function I am making the first and 2nd element along the diagonal of the intrinsic matrix as one to keep the ratio of focal lengths constant and using CV_CALIB_FIX_ASPECT_RATIO
With the change in distance of the chess board the fx and fy are changing with fx:fy almost equal to 1. there are cx and cy values in order of 200 to 400. the fx and fy are in the order of 300 - 700 when I change the distance.
Presently I have put all the distortion coefficients to zero because I did not get good result including distortion coefficients. My original image looked handsome than the undistorted one!!
Am I doing the calibration correctly?. Should I use any other option than CV_CALIB_FIX_ASPECT_RATIO?. If yes, which one?
Hmm, are you looking for "handsome" or "accurate"?
Camera calibration is one of the very few subjects in computer vision where accuracy can be directly quantified in physical terms, and verified by a physical experiment. And the usual lesson is that (a) your numbers are just as good as the effort (and money) you put into them, and (b) real accuracy (as opposed to imagined) is expensive, so you should figure out in advance what your application really requires in the way of precision.
If you look up the geometrical specs of even very cheap lens/sensor combinations (in the megapixel range and above), it becomes readily apparent that sub-sub-mm calibration accuracy is theoretically achievable within a table-top volume of space. Just work out (from the spec sheet of your camera's sensor) the solid angle spanned by one pixel - you'll be dazzled by the spatial resolution you have within reach of your wallet. However, actually achieving REPEATABLY something near that theoretical accuracy takes work.
Here are some recommendations (from personal experience) for getting a good calibration experience with home-grown equipment.
If your method uses a flat target ("checkerboard" or similar), manufacture a good one. Choose a very flat backing (for the size you mention window glass 5 mm thick or more is excellent, though obviously fragile). Verify its flatness against another edge (or, better, a laser beam). Print the pattern on thick-stock paper that won't stretch too easily. Lay it after printing on the backing before gluing and verify that the square sides are indeed very nearly orthogonal. Cheap ink-jet or laser printers are not designed for rigorous geometrical accuracy, do not trust them blindly. Best practice is to use a professional print shop (even a Kinko's will do a much better job than most home printers). Then attach the pattern very carefully to the backing, using spray-on glue and slowly wiping with soft cloth to avoid bubbles and stretching. Wait for a day or longer for the glue to cure and the glue-paper stress to reach its long-term steady state. Finally measure the corner positions with a good caliper and a magnifier. You may get away with one single number for the "average" square size, but it must be an average of actual measurements, not of hopes-n-prayers. Best practice is to actually use a table of measured positions.
Watch your temperature and humidity changes: paper adsorbs water from the air, the backing dilates and contracts. It is amazing how many articles you can find that report sub-millimeter calibration accuracies without quoting the environment conditions (or the target response to them). Needless to say, they are mostly crap. The lower temperature dilation coefficient of glass compared to common sheet metal is another reason for preferring the former as a backing.
Needless to say, you must disable the auto-focus feature of your camera, if it has one: focusing physically moves one or more pieces of glass inside your lens, thus changing (slightly) the field of view and (usually by a lot) the lens distortion and the principal point.
Place the camera on a stable mount that won't vibrate easily. Focus (and f-stop the lens, if it has an iris) as is needed for the application (not the calibration - the calibration procedure and target must be designed for the app's needs, not the other way around). Do not even think of touching camera or lens afterwards. If at all possible, avoid "complex" lenses - e.g. zoom lenses or very wide angle ones. For example, anamorphic lenses require models much more complex than stock OpenCV makes available.
Take lots of measurements and pictures. You want hundreds of measurements (corners) per image, and tens of images. Where data is concerned, the more the merrier. A 10x10 checkerboard is the absolute minimum I would consider. I normally worked at 20x20.
Span the calibration volume when taking pictures. Ideally you want your measurements to be uniformly distributed in the volume of space you will be working with. Most importantly, make sure to angle the target significantly with respect to the focal axis in some of the pictures - to calibrate the focal length you need to "see" some real perspective foreshortening. For best results use a repeatable mechanical jig to move the target. A good one is a one-axis turntable, which will give you an excellent prior model for the motion of the target.
Minimize vibrations and associated motion blur when taking photos.
Use good lighting. Really. It's amazing how often I see people realize late in the game that you need a generous supply of photons to calibrate a camera :-) Use diffuse ambient lighting, and bounce it off white cards on both sides of the field of view.
Watch what your corner extraction code is doing. Draw the detected corner positions on top of the images (in Matlab or Octave, for example), and judge their quality. Removing outliers early using tight thresholds is better than trusting the robustifier in your bundle adjustment code.
Constrain your model if you can. For example, don't try to estimate the principal point if you don't have a good reason to believe that your lens is significantly off-center w.r.t the image, just fix it at the image center on your first attempt. The principal point location is usually poorly observed, because it is inherently confused with the center of the nonlinear distortion and by the component parallel to the image plane of the target-to-camera's translation. Getting it right requires a carefully designed procedure that yields three or more independent vanishing points of the scene and a very good bracketing of the nonlinear distortion. Similarly, unless you have reason to suspect that the lens focal axis is really tilted w.r.t. the sensor plane, fix at zero the (1,2) component of the camera matrix. Generally speaking, use the simplest model that satisfies your measurements and your application needs (that's Ockam's razor for you).
When you have a calibration solution from your optimizer with low enough RMS error (a few tenths of a pixel, typically, see also Josh's answer below), plot the XY pattern of the residual errors (predicted_xy - measured_xy for each corner in all images) and see if it's a round-ish cloud centered at (0, 0). "Clumps" of outliers or non-roundness of the cloud of residuals are screaming alarm bells that something is very wrong - likely outliers due to bad corner detection or matching, or an inappropriate lens distortion model.
Take extra images to verify the accuracy of the solution - use them to verify that the lens distortion is actually removed, and that the planar homography predicted by the calibrated model actually matches the one recovered from the measured corners.
This is a rather late answer, but for people coming to this from Google:
The correct way to check calibration accuracy is to use the reprojection error provided by OpenCV. I'm not sure why this wasn't mentioned anywhere in the answer or comments, you don't need to calculate this by hand - it's the return value of calibrateCamera. In Python it's the first return value (followed by the camera matrix, etc).
The reprojection error is the RMS error between where the points would be projected using the intrinsic coefficients and where they are in the real image. Typically you should expect an RMS error of less than 0.5px - I can routinely get around 0.1px with machine vision cameras. The reprojection error is used in many computer vision papers, there isn't a significantly easier or more accurate way to determine how good your calibration is.
Unless you have a stereo system, you can only work out where something is in 3D space up to a ray, rather than a point. However, as one can work out the pose of each planar calibration image, it's possible to work out where each chessboard corner should fall on the image sensor. The calibration process (more or less) attempts to work out where these rays fall and minimises the error over all the different calibration images. In Zhang's original paper, and subsequent evaluations, around 10-15 images seems to be sufficient; at this point the error doesn't decrease significantly with the addition of more images.
Other software packages like Matlab will give you error estimates for each individual intrinsic, e.g. focal length, centre of projection. I've been unable to make OpenCV spit out that information, but maybe it's in there somewhere. Camera calibration is now native in Matlab 2014a, but you can still get hold of the camera calibration toolbox which is extremely popular with computer vision users.
http://www.vision.caltech.edu/bouguetj/calib_doc/
Visual inspection is necessary, but not sufficient when dealing with your results. The simplest thing to look for is that straight lines in the world become straight in your undistorted images. Beyond that, it's impossible to really be sure if your cameras are calibrated well just by looking at the output images.
The routine provided by Francesco is good, follow that. I use a shelf board as my plane, with the pattern printed on poster paper. Make sure the images are well exposed - avoid specular reflection! I use a standard 8x6 pattern, I've tried denser patterns but I haven't seen such an improvement in accuracy that it makes a difference.
I think this answer should be sufficient for most people wanting to calibrate a camera - realistically unless you're trying to calibrate something exotic like a Fisheye or you're doing it for educational reasons, OpenCV/Matlab is all you need. Zhang's method is considered good enough that virtually everyone in computer vision research uses it, and most of them either use Bouguet's toolbox or OpenCV.

Correspondence between a set of 3D model points and their image projections

I have a set of 3-d points and some images with the projections of these points. I also have the focal length of the camera and the principal point of the images with the projections (resulting from previously done camera calibration).
Is there any way to, given these parameters, find the automatic correspondence between the 3-d points and the image projections? I've looked through some OpenCV documentation but I didn't find anything suitable until now. I'm looking for a method that does the automatic labelling of the projections and thus the correspondence between them and the 3-d points.
The question is not very clear, but I think you mean to say that you have the intrinsic calibration of the camera, but not its location and attitude with respect to the scene (the "extrinsic" part of the calibration).
This problem does not have a unique solution for a general 3d point cloud if all you have is one image: just notice that the image does not change if you move the 3d points anywhere along the rays projecting them into the camera.
If have one or more images, you know everything about the 3D cloud of points (e.g. the points belong to an object of known shape and size, and are at known locations upon it), and you have matched them to their images, then it is a standard "camera resectioning" problem: you just solve for the camera extrinsic parameters that make the 3D points project onto their images.
If you have multiple images and you know that the scene is static while the camera is moving, and you can match "enough" 3d points to their images in each camera position, you can solve for the camera poses up to scale. You may want to start from David Nister's and/or Henrik Stewenius's papers on solvers for calibrated cameras, and then look into "bundle adjustment".
If you really want to learn about this (vast) subject, Zisserman and Hartley's book is as good as any. For code, look into libmv, vxl, and the ceres bundle adjuster.

OpenCV + photogrammetry

i have a stereopair,
photo 1: http://savepic.org/1671682.jpg
photo 2: http://savepic.org/1667586.jpg
there is coordinate system in each image. How can I find coordinates of point A in this system using OpenCV library. It would be nice to see sample code.
I've looked for it at opencv.willowgarage.com/documentation/cpp/camera_calibration_and_3d_reconstruction.html but haven't found (or haven't understood :) )
Your 'stereo' images are fine. What you have already done is solve the correspondence problem: in both images you have indicated points 'A'. This means that you know which pixel corresponds to eachother labeling point 'A'.
What you want to do, is triangulate where your camera is. You can only do this by first calibrating your camera. This is inside of OpenCV already.
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
This gives you the exact vector/ray of light for each vector, and the optical center of your cameras through which the ray passes. Moreover, you need stereo calibration. This establishes the orientation and position of each camera with respect through each other.
From that point on, your triangulation is simple, knowing the pixel location in both images of point 'A'. You have
Location and orientation of camera 1 and camera 2
Otical Ray Vector (pixel location) from the cameras to label 'A'.
So you have 2 locations in space, and 2 rays from these location. The intersection of these rays is your 3D answer.
Note that in practice there rays will never exactly intersect (2 lines in 3D rarely do), so you need to approximate. Use opencv function triangulatePoints(), using the input of the stereo calibration and the pixel index relating to label A.
Firstly of all this is not truly a stereo pair. A nice stereo pair needs to have 60%-80% overlap usually small rotation differences between images. Even if this pair had the necessary BASE to be a good stereo pair due to the extremely kappa rotation the resulting epipolar image would be useless.
Secondly among others you should take a look at the camera calibration and collinearity equations both supported by OpenCV
http://en.wikipedia.org/wiki/Camera_resectioning
http://en.wikipedia.org/wiki/Collinearity_equation
You need to understand the maths.
If the page isn't enough then you should look at the opencv book - it devotes a couple of chapters to this. Then there are a lot of textbooks that cover it in more detail

Resources