MedianBlur() calculate max kernel size - opencv

I want to use MedianBlur function with very high Ksize, like 301 or more. But if I pass ksize too high, sometimes the function will crash. The error message is:
OpenCV Error: (k < 16) in cv::medianBlur_8u_O1, in file ../opencv\modules\imgproc\src\smooth.cpp
(I use opencv4nodejs, but I also tried the original OpenCV 3.4.6).
I did reduce the ksize in a try/catch loop, but not so effective, since I have to work with videos.
I did checkout the OpenCV source code and did some research.
In OpenCV 3.4.6, the crash come from line 241, file opencv\modules\imgproc\src\median_blur.simd.hpp:
for ( k = 0; k < 16 ; ++k )
{
sum += H.coarse[k];
if ( sum > t )
{
sum -= H.coarse[k];
break;
}
}
CV_Assert( k < 16 ); // Error here
t is caculated base on ksize. But sum and H.coarse array's calculations are quite complicated.
Did further researches, I found a scientific document about the algorithm: https://www.researchgate.net/publication/321690537_Efficient_Scalable_Median_Filtering_Using_Histogram-Based_Operations
I am trying to read but honestly, I don't understand too much.
How do I calculate the maximum ksize with a given image?

The maximum kernel size is determined from the bit depth of the image. As mentioned in the publication you cited:
"An 8-bit value is limited to a max value of 255. Our goal is to
support larger kernel sizes, including kernels that are greater in
size than 17 × 17, thus the larger 32-bit data type is used"
so for an image of data type CV_8U the maximum kernel size is 255.

Related

Difference between absdiff and normal subtraction in OpenCV

I am currently planning on training a binary image classification model. The images I want to train on are the difference between two original pictures. In other words, for each data entry, I start out with 2 pictures, take their difference, and the label that difference as a 0 or 1. My question is what is the best way to find this difference. I know about cv2.absdiff and then normal subtraction of images - what is the most effective way to go about this?
About the data: The images I'm training on are screenshots that usually are the same but may have small differences. I found that normal subtraction seems to show the differences less than absdiff.
This is the code I use for absdiff:
diff = cv2.absdiff(img1, img2)
mask = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
th = 1
imask = mask>1
canvas = np.zeros_like(img2, np.uint8)
canvas[imask] = img2[imask]
And then this for normal subtraction:
def extract_diff(self,imageA, imageB, image_name, path):
subtract = imageB.astype(np.float32) - imageA.astype(np.float32)
mask = cv2.inRange(np.abs(subtract),(30,30,30),(255,255,255))
th = 1
imask = mask>1
canvas = np.zeros_like(imageA, np.uint8)
canvas[imask] = imageA[imask]
Thanks!
A difference can be negative or positive.
For some number types, such as uint8 (unsigned 8-bit int), which can't be negative (have no sign), a negative value wraps around and the value would make no sense anymore. Other types can be signed (e.g. floats, signed ints), so a negative value can be represented correctly.
That's why cv.absdiff exists. It always gives you absolute differences, and those are okay to represent in an unsigned type.
Example with numbers: a = 4, b = 6. a-b should be -2, right?
That value, as an uint8, will wrap around to become 0xFE, or 254 in decimal. The 254 value has some relation to the true -2 difference, but it also incorporates the range of values of the data type (8 bits: 256 values), so it's really just "code".
cv.absdiff would give you the absolute of the difference (-2), which is 2.

How are floating-point pixel values converted to integer values?

How does image library (such as PIL, OpenCV, etc) convert floating-point values to integer pixel values?
For example
import numpy as np
from PIL import Image
# Creates a random image and saves in a file
def get_random_img(m=0, s=1, fname='temp.png'):
im = m + s * np.random.randn(60, 60, 3) # For eg. min: -3.8947058634971179, max: 3.6822041760496904
print(im[0, 0]) # for eg. array([ 0.36234732, 0.96987366, 0.08343])
imp = Image.fromarray(im, 'RGB') # (*)
print(np.array(imp)[0, 0]) # [140 , 74, 217]
imp.save(fname)
return im, imp
For the above method, an example is provided in the comment (which is randomly produced). My question is: how does (*) convert ndarray (which can range from - infinity to plus infinity) to pixel values between 0 and 255?
I tried to investigate the Pil.Image.fromarray method and eventually ended by at line #798 d.decode(data) within Pil.Image.Image().frombytes method. I could find the implementation of decode method, thus unable to know what computation goes behind the conversion.
My initial thought was that maybe the method use minimum (to 0) and maximum (to 255) value from the array and then map all the other values accordingly between 0 and 255. But upon investigations, I found out that's not what is happening. Moreover, how does it handle when the values of the array range between 0 and 1 or any other range of values?
Some libraries assume that floating-point pixel values are between 0 and 1, and will linearly map that range to 0 and 255 when casting to 8-bit unsigned integer. Some others will find the minimum and maximum values and map those to 0 and 255. You should always explicitly do this conversion if you want to be sure of what happened to your data.
In general, a pixel does not need to be 8-bit unsigned integer. A pixel can have any numerical type. Usually a pixel intensity represents an amount of light, or a density of some sort, but this is not always the case. Any physical quantity can be sampled in 2 or more dimensions. The range of meaningful values thus depends on what is imaged. Negative values are often also meaningful.
Many cameras have 8-bit precision when converting light intensity to a digital number. Likewise, displays typically have an b-bit intensity range. This is the reason many image file formats store only 8-bit unsigned integer data. However, some cameras have 12 bits or more, and some processes derive pixel data with a higher precision that one does not want to quantize. Therefore formats such as TIFF and ICS will allow you to save images in just about any numeric format you can think of.
I'm afraid it has done nothing anywhere near as clever as you hoped! It has merely interpreted the first byte of the first float as a uint8, then the second byte as another uint8...
from random import random, seed
import numpy as np
from PIL import Image
# Generate repeatable random data, so other folks get the same results
np.random.seed(42)
# Make a single RGB pixel
im = np.random.randn(1, 1, 3)
# Print the floating point values - not that we are interested in them
print(im)
# OUTPUT: [[[ 0.49671415 -0.1382643 0.64768854]]]
# Save that pixel to a file so we can dump it
im.tofile('array.bin')
# Now make a PIL Image from it and print the uint8 RGB values
imp = Image.fromarray(im, 'RGB')
print(imp.getpixel((0,0)))
# OUTPUT: (124, 48, 169)
So, PIL has interpreted our data as RGB=124/48/169
Now look at the hex we dumped. It is 24 bytes long, i.e. 3 float64 (8-byte) values, one for red, one for green and one for blue for the 1 pixel in our image:
xxd array.bin
Output
00000000: 7c30 a928 2aca df3f 2a05 de05 a5b2 c1bf |0.(*..?*.......
00000010: 685e 2450 ddb9 e43f h^$P...?
And the first byte (7c) has become 124, the second byte (30) has become 48 and the third byte (a9) has become 169.
TLDR; PIL has merely taken the first byte of the first float as the Red uint8 channel of the first pixel, then the second byte of the first float as the Green uint8 channel of the first pixel and the third byte of the first float as the Blue uint8 channel of the first pixel.

Reliably Finding the Number of Holes in an Object

I'm currently using MATLAB's bweuler function to find the number of "holes" in an object. I'm having difficulty due to the relatively low resolution of these images, currently only achieving a 50% success rate. Here is an example of an image that will fail (cropped for testing convenience):
Normalized and scaled up so that you can see what's going on:
The number of holes should be 1 here, but I haven't found a reliable way to threshold that small area out while leaving its surroundings intact.
My current method uses an adaptive threshold, but this is problematic because the correct window size is not constant across all samples. For instance, this example will work with a window size of 6, but others will fail.
For reference, here are a couple more failure cases:
N=1 ->
N=2 ->
And a few cases my current method handles:
N=6 ->
N=1 ->
N=1 ->
I'll post a short version of my current code as well, though as I said previously, I do not believe that an adaptive thresholding method will work. I will be playing with some other morphological segmentation methods in the meantime. Just read one of the test images in and call findholes(image).
function N = findholes(I)
bw = imclearborder(adaptivethreshold(I, 9));
N = abs(1 - bweuler(bw2, 4));
end
function bw=adaptivethreshold(IM,ws,C,tm)
%ADAPTIVETHRESHOLD An adaptive thresholding algorithm that seperates the
%foreground from the background with nonuniform illumination.
% bw=adaptivethreshold(IM,ws,C) outputs a binary image bw with the local
% threshold mean-C or median-C to the image IM.
% ws is the local window size.
% C is a constant offset subtracted from the final input image to im2bw (range 0...1).
% tm is 0 or 1, a switch between mean and median. tm=0 mean(default); tm=1 median.
%
% Contributed by Guanglei Xiong (xgl99#mails.tsinghua.edu.cn)
% at Tsinghua University, Beijing, China.
%
% For more information, please see
% http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm
if (nargin < 2)
error('You must provide IM and ws');
end
if (nargin<3)
C = 0;
tm = 0;
end
if (nargin==3)
tm=0;
elseif (tm~=0 && tm~=1)
error('tm must be 0 or 1.');
end
IM=mat2gray(IM);
if tm==0
mIM=imfilter(IM,fspecial('average',ws),'replicate');
else
mIM=medfilt2(IM,[ws ws]);
end
sIM=mIM-IM-C;
bw=im2bw(sIM,0);
bw=imcomplement(bw);
end

Extract Treble and Bass from audio in iOS

I'm looking for a way to get the treble and bass data from a song for some incrementation of time (say 0.1 seconds) and in the range of 0.0 to 1.0. I've googled around but haven't been able to find anything remotely close to what I'm looking for. Ultimately I want to be able to represent the treble and bass level while the song is playing.
Thanks!
Its reasonably easy. You need to perform an FFT and then sum up the bins that interest you. A lot of how you select will depend on the sampling rate of your audio.
You then need to choose an appropriate FFT order to get good information in the frequency bins returned.
So if you do an order 8 FFT you will need 256 samples. This will return you 128 complex pairs.
Next you need to convert these to magnitude. This is actually quite simple. if you are using std::complex you can simply perform a std::abs on the complex number and you will have its magnitude (sqrt( r^2 + i^2 )).
Interestingly at this point there is something called Parseval's theorem. This theorem states that after performinng a fourier transform the sum of the bins returned is equal to the sum of mean squares of the input signal.
This means that to get the amplitude of a specific set of bins you can simply add them together divide by the number of them and then sqrt to get the RMS amplitude value of those bins.
So where does this leave you?
Well from here you need to figure out which bins you are adding together.
A treble tone is defined as above 2000Hz.
A bass tone is below 300Hz (if my memory serves me correctly).
Mids are between 300Hz and 2kHz.
Now suppose your sample rate is 8kHz. The Nyquist rate says that the highest frequency you can represent in 8kHz sampling is 4kHz. Each bin thus represents 4000/128 or 31.25Hz.
So if the first 10 bins (Up to 312.5Hz) are used for Bass frequencies. Bin 10 to Bin 63 represent the mids. Finally bin 64 to 127 is the trebles.
You can then calculate the RMS value as described above and you have the RMS values.
RMS values can be converted to dBFS values by performing 20.0f * log10f( rmsVal );. This will return you a value from 0dB (max amplitude) down to -infinity dB (min amplitude). Be aware amplitudes do not range from -1 to 1.
To help you along, here is a bit of my C++ based FFT class for iPhone (which uses vDSP under the hood):
MacOSFFT::MacOSFFT( unsigned int fftOrder ) :
BaseFFT( fftOrder )
{
mFFTSetup = (void*)vDSP_create_fftsetup( mFFTOrder, 0 );
mImagBuffer.resize( 1 << mFFTOrder );
mRealBufferOut.resize( 1 << mFFTOrder );
mImagBufferOut.resize( 1 << mFFTOrder );
}
MacOSFFT::~MacOSFFT()
{
vDSP_destroy_fftsetup( (FFTSetup)mFFTSetup );
}
bool MacOSFFT::ForwardFFT( std::vector< std::complex< float > >& outVec, const std::vector< float >& inVec )
{
return ForwardFFT( &outVec.front(), &inVec.front(), inVec.size() );
}
bool MacOSFFT::ForwardFFT( std::complex< float >* pOut, const float* pIn, unsigned int num )
{
// Bring in a pre-allocated imaginary buffer that is initialised to 0.
DSPSplitComplex dspscIn;
dspscIn.realp = (float*)pIn;
dspscIn.imagp = &mImagBuffer.front();
DSPSplitComplex dspscOut;
dspscOut.realp = &mRealBufferOut.front();
dspscOut.imagp = &mImagBufferOut.front();
vDSP_fft_zop( (FFTSetup)mFFTSetup, &dspscIn, 1, &dspscOut, 1, mFFTOrder, kFFTDirection_Forward );
vDSP_ztoc( &dspscOut, 1, (DSPComplex*)pOut, 1, num );
return true;
}
It seems that you're looking for Fast Fourier Transform sample code.
It is quite a large topic to cover in an answer.
The tools you will need are already build in iOS: vDSP API
This should help you: vDSP Programming Guide
And there is also a FFT Sample Code available
You might also want to check out iPhoneFFT. Though that code is slighlty
outdated it can help you understand processes "under-the-hood".
Refer to auriotouch2 example from Apple - it has everything from frequency analysis to UI representation of what you want.

Understanding Overlap and Add for Filtering

I am trying to implement the overlap and add method in oder to apply a filter in a real time context. However, it seems that there is something I am doing wrong, as the resulting output has a larger error than I would expect. For comparing the accuracy of my computations I created a file, that I am processing in one chunk. I am comparing this with the output of the overlap and add process and take the resulting comparison as an indicator for the accuracy of the computation. So here is my process of doing Overlap and add:
I take a chunk of length L from my input signal
I pad the chunk with zeros to length L*2
I transform that signal into frequency domain
I multiply the signal in frequency domain with my filter response of length L*2 in frequency domain (the filter response is actually created by interpolating control points in the UI - so this is not transformed from time domain. However using length L*2 in frequency domain should be similar to using a ffted time domain signal of length L padded to L*2)
Then I transform the resulting signal back to time domain and add it to the output stream with an overlap of L
Is there anything wrong with that procedure? After reading a lot of different papers and books I've gotten pretty unsure which is the right way to deal with that.
Here is some more data from the tests I have been running:
I created a signal, which consists of three cosine waves
I used this filter function in the time domain for filtering. (It's symmetric, as it is applied to the whole output of the FFT, which also is symmetric for real input signals)
The output of the IFFT looks like this: It can be seen that low frequencies are attenuated more than frequency in the mid range.
For the overlap add/save and the windowed processing I divided the input signal into 8 chunks of 256 samples. After reassembling them they look like that. (sample 490 - 540)
Output Signal overlap and add:
output signal overlap and save:
output signal using STFT with Hanning window:
It can be seen that the overlap add/save processes differ from the STFT version at the point where chunks are put together (sample 511). This is the main error which leads to different results when comparing windowed process and overlap add/save. However the STFT is closer to the output signal, which has been processed in one chunk.
I am pretty much stuck at this point since a few days. What is wrong here?
Here is my source
// overlap and add
// init Buffers
for (UInt32 j = 0; j<samples; j++){
output[j] = 0.0;
}
// process multiple chunks of data
for (UInt32 i = 0; i < (float)div * 2; i++){
for (UInt32 j = 0; j < chunklength/2; j++){
// copy input data to the first half ofcurrent buffer
inBuffer[j] = input[(int)((float)i * chunklength / 2 + j)];
// pad second half with zeros
inBuffer[j + chunklength/2] = 0.0;
}
// clear buffers
for (UInt32 j = 0; j < chunklength; j++){
outBuffer[j][0] = 0.0;
outBuffer[j][8] = 0.0;
FFTBuffer[j][0] = 0.0;
FFTBuffer[j][9] = 0.0;
}
FFT(inBuffer, FFTBuffer, chunklength);
// processing
for(UInt32 j = 0; j < chunklength; j++){
// multiply with filter
FFTBuffer[j][0] *= multiplier[j];
FFTBuffer[j][10] *= multiplier[j];
}
// Inverse Transform
IFFT((const double**)FFTBuffer, outBuffer, chunklength);
for (UInt32 j = 0; j < chunklength; j++){
// copy to output
if ((int)((float)i * chunklength / 2 + j) < samples){
output[(int)((float)i * chunklength / 2 + j)] += outBuffer[j][0];
}
}
}
After the suggestion below, I tried the following:
IFFTed my Filter. This looks like this:
set the second half to zero:
FFTed the signal and compared the magnitudes to the old filter (blue):
After trying to do overlap and add with this filter, the results have obviously gotten worse instead of better. In order to make sure my FFT works correctly, I tried to IFFT and FFT the filter without setting the second half zero. The result is identical to the orignal filter. So the problem shouldn't be the FFTing. I suppose that this is more of some general understanding of the overlap and add method. But I still can't figure out what is going wrong...
One thing to check is the length of the impulse response of your filter. It must be shorter than the length of zero padding used before the fast convolution FFT, or you will get wrap around errors.
I think the problem might be in the windowing approach that you are using. You simply add zeros to the chunks so there is no actual overlap. In the overlap and add method, you need to damp the edges of the window. What this means is that where you add zeros to the chunk you instead have add weighted input signal and the weight in your case should be 0.5 since only two windows overlap.
Rest of the procedure seems OK. You then simply take FTs, multiply and take inverse FTS and finally add up all the chunks to get the final signal which should be exactly the same if you filtered the whole signal at once.

Resources