I have trained SVM image classifier using sklearn. Assignment requirement is to make separate "prediction.py" function which takes an image and classifies it. Generally it's done by clf.predict() but how can I get values of learnt coefficients so that I may transfer them to predict.py function?
The Scikit learn documentation addresses this, see https://scikit-learn.org/stable/modules/model_persistence.html
Related
I only have around 1000 images of vehicle. I need to train a model that can identify if the image is vehicle or not-vehicle. I do not have a dataset for not-vehicle, as it could be anything besides vehicle.
I guess the best method for this would be to apply transfer learning. I am trying to train data on a pre-trained VGG19 Model. But still, I am unaware on how to train a model with just vehicle images without any non-vehicle images. I am not being able to classify it.
I am new to ML Overall, Any solution based on practical implementation will be highly appreciated.
You are right about transfer learning approach. Have a look a this article, it is exactly about going from multi-class to binary classification with transfer learning - https://medium.com/#mandygu/seefood-creating-a-binary-classifier-using-transfer-learning-da751db7cf9c
You can try using pretrained model and take the output. You might need to apply dimensionality reduction e.g. PCA, to get a more managable size input. After that you can train novelty detection model to identify whether the output is different than your training set.
Refer to this example: https://github.com/J-Yash/Hotdog-Not-Hotdog
Hope this helps.
This is a binary classification problem: whether the input is a vehicle or not.
If you are new to ML, I would suggest you should start implementing basic binary classifiers like Logistic Regression, Support Vector Machines before jumping to Convolutional Neural Networks (CNNs).
I am providing some links for the binary classification problem implementations using different algorithms. I hope this would help.
Logistic Regression: https://github.com/JB1984/Logistic-Regression-Cat-Classifier
SVM: https://github.com/Witsung/SVM-Fruit-Image-Classifier
CNN: https://github.com/A-Jatin/CNN-implementation-for-binary-image-classification
This may sound like a naive question, but i am quite new on this. Let's say I use the Google pre-trained word2vector model (https://github.com/dav/word2vec) to train a classification model. I save my classification model. Now I load back the classification model into memory for testing new instances. Do I need to load the Google word2vector model again? Or is it only used for training my model?
It depends on how your corpuses and test examples are structured and pre-processed.
You are probably using the pre-trained word-vectors to turn text into numerical features. At first, text examples are vectorized to train the classifier. Later, other (test/production) text examples will be vectorized in the same, and presented to get the classifier to get its judgements.
So you will need to use the same text-to-vectors process for test/production text examples as was used during training. Perhaps you've done that in a separate earlier bulk step, in which case you already have the features in the vector form the classifier uses. But often your classifier pipeline will itself take raw text, and vectorize it – in which case it will need the same pre-trained (word)->(vector) mappings available at test time as were available during training.
Let's suppose I would like to classify motorbikes by model.
there are couple of hundreds models of motorbikes I'm interested in.
I do have tens, sometimes hundreds of pictures of each motorbike model.
Can you please point me to the practical example that demonstrates how to train model on your data and then use it to classify images? It needs to be a deep learning model, not simple logistic regression.
I'm not sure about it, but it seems like I can't use pre-trained neural net because it has been trained on wide range of objects like cat, human, cars etc. They may be not too good at distinguishing the motorbike nuances I'm interested in.
I found couple of such examples (tensorflow has one), but sadly, all of them were using pre-trained model. None of it had example how to train it on your own dataset.
In cases like yours you either use transfer learning or fine tuning. If you have more then thousand images of motorbikes I would use fine tuning and if you have less transfer learning.
Fine tuning is using a pre trained model and using a different classifier part. Then the new classifier part maybe the last 1-2 layers of the trained model are trained to your dataset.
Transfer learning means using a pre trained model and letting it output features for an input image. Now you use a new classifier based on those features. Maybe a SVM or a logistic regression.
An example for this can be seen here: https://github.com/cpra/dlvc2016/blob/master/lectures/lecture10.pdf. slide 33.
This paper Quick, Draw! Doodle Recognition from a kaggle challenge may be similar enough to what you are doing. The code is on github. You may need some data augmentation if you only have a few hundred images for each category.
What you want is pretty EZ. Follow the darknet YOLO implementation
Instruction: https://pjreddie.com/darknet/yolo/
Code https://github.com/pjreddie/darknet
Training YOLO on COCO
You can train YOLO from scratch if you want to play with different training regimes, hyper-parameters, or datasets. Here's how to get it working on the COCO dataset.
Get The COCO Data
To train YOLO you will need all of the COCO data and labels. The script scripts/get_coco_dataset.sh will do this for you. Figure out where you want to put the COCO data and download it, for example:
cp scripts/get_coco_dataset.sh data
cd data
bash get_coco_dataset.sh
Add your data inside and make sure it is same as testing samples.
Now you should have all the data and the labels generated for Darknet.
Then call training script with the pre-trained weight.
Keep in mind that only training on your motorcycle may not result in good estimation. There would be biased result coming out, I red it somewhere b4.
The rest is all inside the link. Good luck
So after you have a machine learning algorithm trained, with your layers, nodes, and weights, how exactly does it go about getting a prediction for an input vector? I am using MultiLayer Perceptron (neural networks).
From what I currently understand, you start with your input vector to be predicted. Then you send it to your hidden layer(s) where it adds your bias term to each data point, then adds the sum of the product of each data point and the weight for each node (found in training), then runs that through the same activation function used in training. Repeat for each hidden layer, then does the same for your output layer. Then each node in the output layer is your prediction(s).
Is this correct?
I got confused when using opencv to do this, because in the guide it says when you use the function predict:
If you are using the default cvANN_MLP::SIGMOID_SYM activation
function with the default parameter values fparam1=0 and fparam2=0
then the function used is y = 1.7159*tanh(2/3 * x), so the output
will range from [-1.7159, 1.7159], instead of [0,1].
However, when training it is also stated in the documentation that SIGMOID_SYM uses the activation function:
f(x)= beta*(1-e^{-alpha x})/(1+e^{-alpha x} )
Where alpha and beta are user defined variables.
So, I'm not quite sure what this means. Where does the tanh function come into play? Can anyone clear this up please? Thanks for the time!
The documentation where this is found is here:
reference to the tanh is under function descriptions predict.
reference to activation function is by the S looking graph in the top part of the page.
Since this is a general question, and not code specific, I did not post any code with it.
I would suggest that you read about appropriate algorithm that your are using or plan to use. To be honest there is no one definite algorithm to solve a problem but you can explore what features you got and what you need.
Regarding how an algorithm performs prediction is totally depended on the choice of algorithm. Support Vector Machine (SVM) performs prediction by fitting hyperplanes on the feature space and using some metric such as distance for learning and than the learnt model is used for prediction. KNN on the other than uses simple nearest neighbor measurement for prediction.
Please do more work on what exactly you need and read through the research papers to get proper understanding. There is not magic involved in prediction but rather mathematical formulations.
I want to training data and use HOG algorithm to detect pedestrian.
Now I can use defaultHog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); in opencv to detection, but the result is not very good to my testing video. So I want to do training use my database.
I have prepared 1000+ positive sample, and 1000+ negative samples. They are cropped to size 50 * 100, and I have do the list file.
And I have read some tutorials on the internet, they all so complex, sometimes abstruse. Most of them are analyze the source code and the algorithm of HOG. But with only less examples and simple anylize.
Some instruction show that libsvm\windows\svm-train.exe can be used to training, Can anyone gives an examples according to 1000+ 50*100 positive samples?
For example, like haartraing, we can do it from opencv, like haartraining.exe –a –b with some parameters, and get a *.xml as a result which will be used to people detection?
Or is there any other method to training, and detection?
I prefer to know how to use it and the detail procedures. As the detail algorithm, it is not important to me. I just want to implement it.
If anyone know about it, please give me some tips.
I provided some sample code and instructions to start training your own HOG descriptor using openCV:
See https://github.com/DaHoC/trainHOG/wiki/trainHOG-Tutorial.
The algorithm is indeed too complex to provide in short, the basic idea however is to:
Extract HOG features from negative and positive sample images of identical size and type.
Use the extracted feature vectors along with their respective classes to train a SVM classifier, in this step you can use the svm-train.exe with a generated file of the correct format containing the feature vectors and their classes (or directly include and address the libsvm library class in your sources).
The resulting SVM model and support vectors are calculated into a single descriptor vector that can be used with the openCV detector.
Best regards