I used machine learning to train depression related sentences. And it was LinearSVC that performed best. In addition to LinearSVC, I experimented with MultinomialNB and LogisticRegression, and I chose the model with the highest accuracy among the three. By the way, what I want to do is to be able to think in advance which model will fit, like ml_map provided by Scikit-learn. Where can I get this information? I searched a few papers, but couldn't find anything that contained more detailed information other than that SVM was suitable for text classification. How do I study to get prior knowledge like this ml_map?
How do I study to get prior knowledge like this ml_map?
Try to work with different example datasets on different data types by using different algorithms. There are hundreds to be explored. Once you get the good grasp of how they work, it will become more clear. And do not forget to try googling something like advantages of algorithm X, it helps a lot.
And here are my thoughts, I think I used to ask such questions before and I hope it can help if you are struggling: The more you work on different Machine Learning models for a specific problem, you will soon realize that data and feature engineering play the more important parts than the algorithms themselves. The road map provided by scikit-learn gives you a good view of what group of algorithms to use to deal with certain types of data and that is a good start. The boundaries between them, however, are rather subtle. In other words, one problem can be solved by different approaches depending on how you organize and engineer your data.
To sum it up, in order to achieve a good out-of-sample (i.e., good generalization) performance while solving a problem, it is mandatory to look at the training/testing process with different setting combinations and be mindful with your data (for example, answer this question: does it cover most samples in terms of distribution in the wild or just a portion of it?)
I'm using the spaCy module to find name entities for input text. I am training the model to predict medical terms. I currently have access to 2 million medical notes, which I wrote a program to that annotates the notes.
I cross reference the medical notes against a pre-defined list of ~90 thousand terms, which is used for the annotation task. At the current pace of annotation, it takes about an hour and a half to annotate 10,000 notes. The way that annotation currently works, I end up with about 90% of the notes having no annotations (I'm currently working on getting a better list of cross-reference terms), so I take the ~1000 annotated notes and train the model on these.
I have checked and the model sort of responds to known annotated terms that it has seen (for example, the term tachycardia has been seen before from annotation, and will sometimes pick it up when the term shows up in the text).
This background might not be too relevant to my particular question, but I thought I would give a small bit of background to my current position.
I was wondering if anyone who has successfully trained a new entity in spaCy could give me some insight into their personal experience in the amount of training that was necessary to have at least somewhat reliable entity recognition.
Thanks!
I trained the Named Entity Recognizer of the Greek language from scratch because no data was available, so I would try to give you a summary of the things I noticed for my case.
I trained the NER with Prodigy annotation tool.
The answer to your question from my personal experience depends on the following things:
The number of labels you want your recognizer to be able to predict. It makes sense that when the numbers of labels (possible outputs) increases, it gets more difficult for your neural network to be able to distinguish them so the amount of data you need increases.
How different are the labels. For example, GPE and LOC tags are quite close and often used in the same context, so neural network was confusing them a lot at the beginning. It is advisable to provide more data related to labels that are close to each other.
The way of training. Pretty much there are two possibilities here:
Fully annotated sentences. This means that you tell your neural network that there are no missing tags to your annotations.
Partially annotated sentences. This means that you tell your neural network that your annotations are correct, but probably some tags are missing. This makes it harder for the network to rely on your data and for this reason, more data need to be provided.
Hyper-parameters. It is really important to fine tune your network in order to get the maximum out of your dataset.
The quality of the dataset. That means that if the dataset is representative of the things that you are going to ask your network to predict less data is required. However, if you are building a more general neural network (that would answer correctly in different contexts), more data is needed for that.
For the Greek model, I tried to predict among 6 labels that were distinct enough, I provided around 2000 fully annotated sentences and I spent a great amount of time fine-tuning.
Results: 70% F-measure, which is quite good for the complexity of the task.
Hope it helps!
I have a school project to make a program that uses the Weka tools to make predictions on football (soccer) games.
Since the algorithms are already there (the J48 algorithm), I need just the data. I found a website that offers football game data for free and I tried it in Weka but the predictions were pretty bad so I assume my data is not structured properly.
I need to extract the data from my source and format it another way in order to make new attributes and classes for my model. Does anyone know of a course/tutorial/guide on how to properly create your attributes and classes for machine learning predictions? Is there a standard that describes the best way of choosing the attributes of a data set for training a machine learning algorithm? What's the approach on this?
here's an example of the data that I have at the moment: http://www.football-data.co.uk/mmz4281/1516/E0.csv
and here is what the columns mean: http://www.football-data.co.uk/notes.txt
The problem may be that the data set you have is too small. Suppose you have ten variables and each variable has a range of 10 values. There are 10^10 possible configurations of these variables. It is unlikely your data set will be this large let alone cover all of the possible configurations. The trick is to narrow down the variables to the most relevant to avoid this large potential search space.
A second problem is that certain combinations of variables may be more significant than others.
The J48 algorithm attempts to to find the most relevant variable using entropy at each level in the tree. each path through the tree can be thought of as an AND condition: V1==a & V2==b ...
This covers the significance due to joint interactions. But what if the outcome is a result of A&B&C OR W&X&Y? The J48 algorithm will find only one and it will be the one where the the first variable selected will have the most overall significance when considered alone.
So, to answer your question, you need to not only find a training set which will cover the most common variable configurations in the "general" population but find an algorithm which will faithfully represent these training cases. Faithful meaning it will generally apply to unseen cases.
It's not an easy task. Many people and much money are involved in sports betting. If it were as easy as selecting the proper training set, you can be sure it would have been found by now.
EDIT:
It was asked in the comments how to you find the proper algorithm. The answer is the same way you find a needle in a haystack. There is no set rule. You may be lucky and stumble across it but in a large search space you won't ever know if you have. This is the same problem as finding the optimum point in a very convoluted search space.
A short-term answer is to
Think about what the algorithm can really accomplish. The J48 (and similar) algorithms are best suited for classification where the influence of the variables on the result are well known and follow a hierarchy. Flower classification is one example where it will likely excel.
Check the model against the training set. If it does poorly with the training set then it will likely have poor performance with unseen data. In general, you should expect the model to performance against the training to exceed the performance against unseen data.
The algorithm needs to be tested with data it has never seen. Testing against the training set, while a quick elimination test, will likely lead to overconfidence.
Reserve some of your data for testing. Weka provides a way to do this. The best case scenario would be to build the model on all cases except one (Leave On Out Approach) then see how the model performs on the average with these.
But this assumes the data at hand are not in some way biased.
A second pitfall is to let the test results bias the way you build the model.For example, trying different models parameters until you get an acceptable test response. With J48 it's not easy to allow this bias to creep in but if it did then you have just used your test set as an auxiliary training set.
Continue collecting more data; testing as long as possible. Even after all of the above, you still won't know how useful the algorithm is unless you can observe its performance against future cases. When what appears to be a good model starts behaving poorly then it's time to go back to the drawing board.
Surprisingly, there are a large number of fields (mostly in the soft sciences) which fail to see the need to verify the model with future data. But this is a matter better discussed elsewhere.
This may not be the answer you are looking for but it is the way things are.
In summary,
The training data set should cover the 'significant' variable configurations
You should verify the model against unseen data
Identifying (1) and doing (2) are the tricky bits. There is no cut-and-dried recipe to follow.
I'd like to take a shot at characterizing incoming documents in my app as either "well" or "poorly" written. I realize this is no easy task, but even a rough idea would be useful. I feel like the way to do this would be via naïve Bayes classifier with two classes, but am open to suggestions. So two questions:
is this method the optimal (taking into account simplicity) way to do this
assuming a large enough training db?
are there libraries in ruby
(or any integratable JRuby or
whatever) that i can plug into my
rails app to make this happen with little fuss?
Thanks!
You might try using vocabulary vector analysis. Covered some here:
http://en.wikipedia.org/wiki/Semantic_similarity
Basically you build up a corpus of texts that you deem "well-written" or "poorly-written" and count the frequency of certain words. Make a normalized vector for each, and then compute the distance between those to the vectors of each incoming document. I am not a statistician, but I'm told it's similar to Bayesian filtering, but seems to deal with misspellings and outliers better.
This is not perfect, by any means. Depending on how accurate you need it to be, you will probably still need humans to make the final judgement. But we've had good luck using it as a pre-filter to reduce number of reviewers.
Another simple algorithm to check out is the Flesch-Kincaid readability metric. It is quite widely used and should be easy to implement. I assume one of the Ruby NLP libraries has syllable methods.
You may find interesting this Burstein, Chodorow, and Leacock on the Criterion essay evaluation system for a pretty interesting very high-level overview of how one particular system did essay evaluation as well as style correction.
A developer I am working with is developing a program that analyzes images of pavement to find cracks in the pavement. For every crack his program finds, it produces an entry in a file that tells me which pixels make up that particular crack. There are two problems with his software though:
1) It produces several false positives
2) If he finds a crack, he only finds small sections of it and denotes those sections as being separate cracks.
My job is to write software that will read this data, analyze it, and tell the difference between false-positives and actual cracks. I also need to determine how to group together all the small sections of a crack as one.
I have tried various ways of filtering the data to eliminate false-positives, and have been using neural networks to a limited degree of success to group cracks together. I understand there will be error, but as of now, there is just too much error. Does anyone have any insight for a non-AI expert as to the best way to accomplish my task or learn more about it? What kinds of books should I read, or what kind of classes should I take?
EDIT My question is more about how to notice patterns in my coworker's data and identify those patterns as actual cracks. It's the higher-level logic that I'm concerned with, not so much the low-level logic.
EDIT In all actuality, it would take AT LEAST 20 sample images to give an accurate representation of the data I'm working with. It varies a lot. But I do have a sample here, here, and here. These images have already been processed by my coworker's process. The red, blue, and green data is what I have to classify (red stands for dark crack, blue stands for light crack, and green stands for a wide/sealed crack).
In addition to the useful comments about image processing, it also sounds like you're dealing with a clustering problem.
Clustering algorithms come from the machine learning literature, specifically unsupervised learning. As the name implies, the basic idea is to try to identify natural clusters of data points within some large set of data.
For example, the picture below shows how a clustering algorithm might group a bunch of points into 7 clusters (indicated by circles and color):
(source: natekohl.net)
In your case, a clustering algorithm would attempt to repeatedly merge small cracks to form larger cracks, until some stopping criteria is met. The end result would be a smaller set of joined cracks. Of course, cracks are a little different than two-dimensional points -- part of the trick in getting a clustering algorithm to work here will be defining a useful distance metric between two cracks.
Popular clustering algorithms include k-means clustering (demo) and hierarchical clustering. That second link also has a nice step-by-step explanation of how k-means works.
EDIT: This paper by some engineers at Phillips looks relevant to what you're trying to do:
Chenn-Jung Huang, Chua-Chin Wang, Chi-Feng Wu, "Image Processing Techniques for Wafer Defect Cluster Identification," IEEE Design and Test of Computers, vol. 19, no. 2, pp. 44-48, March/April, 2002.
They're doing a visual inspection for defects on silicon wafers, and use a median filter to remove noise before using a nearest-neighbor clustering algorithm to detect the defects.
Here are some related papers/books that they cite that might be useful:
M. Taubenlatt and J. Batchelder, “Patterned Wafer Inspection Using Spatial Filtering for Cluster Environment,” Applied Optics, vol. 31, no. 17, June 1992, pp. 3354-3362.
F.-L. Chen and S.-F. Liu, “A Neural-Network Approach to Recognize Defect Spatial Pattern in Semiconductor Fabrication.” IEEE Trans. Semiconductor Manufacturing, vol. 13, no. 3, Aug. 2000, pp. 366-373.
G. Earl, R. Johnsonbaugh, and S. Jost, Pattern Recognition and Image Analysis, Prentice Hall, Upper Saddle River, N.J., 1996.
Your problem falls in the very broad field of image classification. These types of problems can be notoriously difficult, and at the end of the day, solving them is an art. You must exploit every piece of knowledge you have about the problem domain to make it tractable.
One fundamental issue is normalization. You want to have similarly classified objects to be as similar as possible in their data representation. For example, if you have an image of the cracks, do all images have the same orientation? If not, then rotating the image may help in your classification. Similarly, scaling and translation (refer to this)
You also want to remove as much irrelevant data as possible from your training sets. Rather than directly working on the image, perhaps you could use edge extraction (for example Canny edge detection). This will remove all the 'noise' from the image, leaving only the edges. The exercise is then reduced to identifying which edges are the cracks and which are the natural pavement.
If you want to fast track to a solution then I suggest you first try the your luck with a Convolutional Neural Net, which can perform pretty good image classification with a minimum of preprocessing and noramlization. Its pretty well known in handwriting recognition, and might be just right for what you're doing.
I'm a bit confused by the way you've chosen to break down the problem. If your coworker isn't identifying complete cracks, and that's the spec, then that makes it your problem. But if you manage to stitch all the cracks together, and avoid his false positives, then haven't you just done his job?
That aside, I think this is an edge detection problem rather than a classification problem. If the edge detector is good, then your issues go away.
If you are still set on classification, then you are going to need a training set with known answers, since you need a way to quantify what differentiates a false positive from a real crack. However I still think it is unlikely that your classifier will be able to connect the cracks, since these are specific to each individual paving slab.
I have to agree with ire_and_curses, once you dive into the realm of edge detection to patch your co-developers crack detection, and remove his false positives, it seems as if you would be doing his job. If you can patch what his software did not detect, and remove his false positives around what he has given you. It seems like you would be able to do this for the full image.
If the spec is for him to detect the cracks, and you classify them, then it's his job to do the edge detection and remove false positives. And your job to take what he has given you and classify what type of crack it is. If you have to do edge detection to do that, then it sounds like you are not far from putting your co-developer out of work.
There are some very good answers here. But if you are unable to solve the problem, you may consider Mechanical Turk. In some cases it can be very cost-effective for stubborn problems. I know people who use it for all kinds of things like this (verification that a human can do easily but proves hard to code).
https://www.mturk.com/mturk/welcome
I am no expert by any means, but try looking at Haar Cascades. You may also wish to experiment with the OpenCV toolkit. These two things together do face detection and other object-detection tasks.
You may have to do "training" to develop a Haar Cascade for cracks in pavement.
What’s the best approach to recognize patterns in data, and what’s the best way to learn more on the topic?
The best approach is to study pattern recognition and machine learning. I would start with Duda's Pattern Classification and use Bishop's Pattern Recognition and Machine Learning as reference. It would take a good while for the material to sink in, but getting basic sense of pattern recognition and major approaches of classification problem should give you the direction. I can sit here and make some assumptions about your data, but honestly you probably have the best idea about the data set since you've been dealing with it more than anyone. Some of the useful technique for instance could be support vector machine and boosting.
Edit: An interesting application of boosting is real-time face detection. See Viola/Jones's Rapid Object Detection using a Boosted Cascade of Simple
Features (pdf). Also, looking at the sample images, I'd say you should try improving the edge detection a bit. Maybe smoothing the image with Gaussian and running more aggressive edge detection can increase detection of smaller cracks.
I suggest you pick up any image processing textbook and read on the subject.
Particularly, you might be interested in Morphological Operations like Dilation and Erosion, which complements the job of an edge detector. Plenty of materials on the net...
This is an image processing problem. There are lots of books written on the subject, and much of the material in these books will go beyond a line-detection problem like this. Here is the outline of one technique that would work for the problem.
When you find a crack, you find some pixels that make up the crack. Edge detection filters or other edge detection methods can be used for this.
Start with one (any) pixel in a crack, then "follow" it to make a multipoint line out of the crack -- save the points that make up the line. You can remove some intermediate points if they lie close to a straight line. Do this with all the crack pixels. If you have a star-shaped crack, don't worry about it. Just follow the pixels in one (or two) directions to make up a line, then remove these pixels from the set of crack pixels. The other legs of the star will recognized as separate lines (for now).
You might perform some thinning on the crack pixels before step 1. In other words, check the neighbors of the pixels, and if there are too many then ignore that pixel. (This is a simplification -- you can find several algorithms for this.) Another preprocessing step might be to remove all the lines that are too thin or two faint. This might help with the false positives.
Now you have a lot of short, multipoint lines. For the endpoints of each line, find the nearest line. If the lines are within a tolerance, then "connect" the lines -- link them or add them to the same structure or array. This way, you can connect the close cracks, which would likely be the same crack in the concrete.
It seems like no matter the algorithm, some parameter adjustment will be necessary for good performance. Write it so it's easy to make minor changes in things like intensity thresholds, minimum and maximum thickness, etc.
Depending on the usage environment, you might want to allow user judgement do determine the questionable cases, and/or allow a user to review the all the cracks and click to combine, split or remove detected cracks.
You got some very good answer, esp. #Nate's, and all the links and books suggested are worthwhile. However, I'm surprised nobody suggested the one book that would have been my top pick -- O'Reilly's Programming Collective Intelligence. The title may not seem germane to your question, but, believe me, the contents are: one of the most practical, programmer-oriented coverage of data mining and "machine learning" I've ever seen. Give it a spin!-)
It sounds a little like a problem there is in Rock Mechanics, where there are joints in a rock mass and these joints have to be grouped into 'sets' by orientation, length and other properties. In this instance one method that works well is clustering, although classical K-means does seem to have a few problems which I have addressed in the past using a genetic algorithm to run the interative solution.
In this instance I suspect it might not work quite the same way. In this case I suspect that you need to create your groups to start with i.e. longitudinal, transverse etc. and define exactly what the behviour of each group is i.e. can a single longitudinal crack branch part way along it's length, and if it does what does that do to it's classification.
Once you have that then for each crack, I would generate a random crack or pattern of cracks based on the classification you have created. You can then use something like a least squares approach to see how closely the crack you are checking fits against the random crack / cracks you have generated. You can repeat this analysis many times in the manner of a Monte-Carlo analysis to identify which of the randomly generated crack / cracks best fits the one you are checking.
To then deal with the false positives you will need to create a pattern for each of the different types of false positives i.e. the edge of a kerb is a straight line. You will then be able to run the analysis picking out which is the most likely group for each crack you analyse.
Finally, you will need to 'tweak' the definition of different crack types to try and get a better result. I guess this could either use an automated approach or a manual approach depending on how you define your different crack types.
One other modification that sometimes helps when I'm doing problems like this is to have a random group. By tweaking the sensitivity of a random group i.e. how more or less likely a crack is to be included in the random group, you can sometimes adjust the sensitivty of the model to complex patterns that don't really fit anywhere.
Good luck, looks to me like you have a real challenge.
You should read about data mining, specially pattern mining.
Data mining is the process of extracting patterns from data. As more data are gathered, with the amount of data doubling every three years, data mining is becoming an increasingly important tool to transform these data into information. It is commonly used in a wide range of profiling practices, such as marketing, surveillance, fraud detection and scientific discovery.
A good book on the subject is Data Mining: Practical Machine Learning Tools and Techniques
(source: waikato.ac.nz) ](http://www.amazon.com/Data-Mining-Ian-H-Witten/dp/3446215336 "ISBN 0-12-088407-0")
Basically what you have to do is apply statistical tools and methodologies to your datasets. The most used comparison methodologies are Student's t-test and the Chi squared test, to see if two unrelated variables are related with some confidence.