Can I run Kubernetes and Swarm at the same time? - docker

Pretty basic question. We have an existing swarm and I want to start migrating to Kubernetes. Can I run both using the same docker hosts?

See the official documentation for Docker for Mac at https://docs.docker.com/docker-for-mac/kubernetes/ stating:
When Kubernetes support is enabled, you can deploy your workloads, in parallel, on Kubernetes, Swarm, and as standalone containers. Enabling or disabling the Kubernetes server does not affect your other workloads.
So: yes, both should be able to run in parallel.
If you're using Docker on Linux you won't have the convenient tools available like in Docker for Mac/Windows, but both orchestrators should still be able to run in parallel without further issues. On system level, details like e.g. ports on a network interface are still shared resources, so they cannot be bound by different orchestrators.

Related

Difference between Minikube, Kubernetes, Docker Compose, Docker Swarm, etc

I am new to cluster container management, and this question is the basis for all the freshers over here.
I read some documentation, but still, my understanding is not too clear, so any leads.. helping to understand?
Somewhere it is mentioned, Minikube is used to run Kubernetes locally. So if we want to maintain cluster management in my four-node Raspberry Pi, then Minikube is not the option?
Does Minikube support only a one-node system?
Docker Compose is set of instructions and a YAML file to configure and start multiple Docker containers. Can we use this to start containers of the different hosts? Then for simple orchestration where I need to call container of the second host, I don't need any cluster management, right?
What is the link between Docker Swarm and Kubernetes? Both are independent cluster management. Is it efficient to use Kubernetes on Raspberry Pi? Any issue, because I was told that Kubernetes in single node takes the complete memory and CPU usage? Is it true?
Is there other cluster management for Raspberry Pi?
I think this 4-5 set will help me better.
Presuming that your goal here is to run a set of containers over a number of different Raspberry Pi based nodes:
Minikube isn't really appropriate. This starts a single virtual machine on a Windows, MacOS or Linux and installs a Kubernetes cluster into it. It's generally used by developers to quickly start-up a cluster on their laptops or desktops for development and testing purposes.
Docker Compose is a system for managing sets of related containers. So for example if you had a web server and database that you wanted to manage together you could put them in a single Docker Compose file.
Docker Swarm is a system for managing sets of containers across multiple hosts. It's essentially an alternative to Kubernetes. It has fewer features than Kubernetes, but it is much simpler to set up.
If you want a really simple multi-node Container cluster, I'd say that Docker swarm is a reasonable choice. If you explicitly want to experiment with Kubernetes, I'd say that kubeadm is a good option here. Kubernetes in general has higher resource requirements than Docker Swarm, so it could be somewhat less suited to it, although I know people have successfully run Kubernetes clusters on Raspberry Pis.
Docker Compose
A utility to to start multiple docker containers on a single host using a single docker-compose up. This makes it easier to start multiple containers at once, rather than having do mutliple docker run commands.
Docker swarm
A native container orchestrator for Docker. Docker swarm allows you to create a cluster of docker containers running on multiple machines. It provides features such as replication, scaling, self-healing i.e. starting a new container when one dies ...
Kubernetes
Also a container orchestrator. Kubernetes and Docker swarm can be considered as alternatives to one another. They both try to handle managing containers starting in a cluster
Minikube
Creating a real kubernetes cluster requires having multiple machines either on premise or on a cloud platform. This is not always convenient if someone is just new to Kubernetes and trying to learn by playing around with Kubernetes. To solve that minikube allows you to start a very basic Kubernetes cluster that consists of a single VM on you machine, which you can use to play around with Kubernetes.
Minikube is not for a production or multi-node cluster. There are many tools that can be used to create a multi-node Kubernetes cluster such as kubeadm
Containers are the future of application deployment. Containers are smallest unit of deployment in docker. There are three components in docker as docker engine to run a single container, docker-compose to run a multi-container application on a single host and docker-swarm to run multi-container application across hosts which also an orchestration tool.
In kubernetes, the smallest unit of deployment is Pod(which is composed of multiple container). Minikube is a single node cluster where you can install it locally and try, test and feel the kubernetes features locally. But, you can't scale this to more than a single machine. Kubernetes is an orchestration tool like Docker Swarm but more prominent than Docker Swarm with respect to features, scaling, resiliency, and security.
You can do the analysis and think about which tool will be fit for your requirements. Each one having their own pros or cons like docker swarm is good and easy to manage small clusters whereas kubernetes is much better for larger once. There is another orchestration tool Mesos which is also popular and used in largest size clusters.
Check this out, Choose your own Adventure but, it's just a general analogy and only to understand because all the three technologies are evolving rapidly.
I get the impression you're mostly looking for confirmation and am happy to help with that if I can.
Yes, minikube is local-only
Yes, minikube is intended to be single-node
Docker-compose isn't really an orchestration system like swarm and Kubernetes are. It helps with running related containers on a single host, but it is not used for multi-host.
Kubernetes and Docker Swarm are both container orchestration systems. These systems are good at managing scaling up, but they have an overhead associated with them so they're better suited to multi-node.
I don't know the range of orchestration options for Raspberry Pi, but there are Kubernetes examples out there such as Build Your Own Cloud with Kubernetes and Some Raspberry Pi.
For Pi, you can use Docker Swarm Mode on one or more Pi's. You can even run ARM emulation for testing on Docker for Windows/Mac before trying to get it all working directly on a Pi. Same goes for Kubernetes, as it's built-in to Docker for Windows/Mac now (no minikube needed).
Alex Ellis has a good blog on Pi and Docker and this post may help too.
I've been playing around with orchestrating Docker containers on a subnet of Raspberry Pis (3Bs).
I found Docker-swarm easiest to set up and work with, and adequate for my purposes. Guide: https://docs.docker.com/engine/swarm/swarm-tutorial/
For Kubernetes there are two main options; k3s and microk8s. Some guides:
k3s
https://bryanbende.com/development/2021/05/07/k3s-raspberry-pi-initial-setup
microk8s
https://ubuntu.com/tutorials/how-to-kubernetes-cluster-on-raspberry-pi#1-overview

Can all docker swarm instances run on same machine?

I have a couple of Docker swarm questions (Sorry for not splitting them up but they are all closely related):
Do all instances in a swarm have to run on different machines or can they all run on the same? (if having limited amount of hardware and just wanting to try swarm mode)
Do I have to run swarm mode to be able to communicate between instances?
What is the key difference between swarm mode and just running a number of containers as regular?
What are the options of communication between instances of containers? (in swarm and in regular mode) http? named pipes? other?
If using http communication between containers on same machine, will it be roughly similarly as fast as named pipes?
Is there any built in support for a message bus or similar in Docker?
Is there support for any consensus protocol in Docker?
Are there any GUI's for designing, managing, testing and/or debugging Docker swarms?
Can a container list other containers, stop/restart some and start new ones? (to be able to function as a manager for other containers)
Can a container be given access to OS-features (Linux in my case) to configure for instance a reverse proxy or port forwarding on the WAN?
Background: What I'm trying to figure out is how I should go about and build a micro service mesh using Docker. The containers will be running .NET Core. I'm not too keen on relying too much on specifically Docker since it may not be the preferred tech in a couple of years. What can/should I do with Docker and what can/should I do inside the containers. That's what I'm trying to figure out.
I've copied your questions and tried to answer them.
Do all instances in a swarm have to run on different machines or can they all run on the same? (if having limited amount of hardware and just wanting to try swarm mode)
You can have only one machine in a swarm and run multiple tasks of the same service or in other words your scale of a service can be more than the number of actual machines. I have a testing swarm with a single machine and one with three and it works the same way.
Do I have to run swarm mode to be able to communicate between instances?
You have to run your docker in swarm mode in order to create a service, please see this link
What is the key difference between swarm mode and just running a number of containers as regular?
The key difference afaik is, that when a task goes down, docker puts another task up automatically. And you can easily scale your services, which means you can easily have multiple tasks just by scaling your service (up or down). As of running a container - when it goes down you have to manually start another.
What are the options of communication between instances of containers? (in swarm and in regular mode) http? named pipes? other?
I've currently only tested with a couple of wildfly servers in a swarm, which are on the same network. I'm not sure about others, but would love to find out. I've only read about RabbitMQ, but can't seem to find the link atm.
If using http communication between containers on same machine, will it be roughly similarly as fast as named pipes?
I can't say.
Is there any built in support for a message bus or similar in Docker?
I can't say.
Are there any GUI's for designing, managing, testing and/or debugging Docker swarms?
I've tested rancher and portainer.io, for a list of them I found this link
Can a container list other containers, stop/restart some and start new ones?
I'm not sure why would you want to do that? And I guess it's possible, see this link
Can a container be given access to OS-features (Linux in my case) to configure for instance a reverse proxy or port forwarding on the WAN?
I can't say.
#namokarm did a great job, and I'm filling in the gaps:
Benefits of Swarm over docker run or docker-compose.
All communications between containers has to be TCP/UDP etc. You could force two containers to only run on a single machine, then bind-mount their socket so they skip the network, but that would be a bit of an anti-pattern. Swarm is designed for everything to be distributed and TCP/UDP.
In a few cases, such as PHP-FPM + Nginx, I recommend bundling both in the same container (against docker best practices, but trust me it's easier than separate containers). This will ensure they scale together (1-to-1 relationship) and stay fast since they use local sockets to communicate). I only recommend this for a few setups like this, the other being ColdFusion + Nginx because they are two parts of the same tool that provide a HTTP response... I don't recommend bundling images together in nearly all other cases, but I'm open to ideas :).
Rancher is no longer supporting Swarm. Portainer and SwarmPit are GUI options.
Yes a container running something like Portainer/SwarmPit or controlling the Docker socket through a bind-mount or TCP can control the whole Swarm. This is how all docker management works :)
For reverse proxy, you would run a container-based proxy like Traefik or Docker Flow Proxy, which sets up HAProxy for Docker and Swarm.
Many of these topics are discussed in my DockerCon talks: https://www.bretfisher.com/dockercon18/

Kubernetes vs. Docker: What Does It Really Mean?

I know that Docker and Kubernetes aren’t direct competitors. Docker is the container platform and containers are coordinated and scheduled by Kubernetes, which is a tool.
What does it really mean and how can I deploy my app on Docker for Azure ?
Short answer:
Docker (and containers in general) solve the problem of packaging an application and its dependencies. This makes it easy to ship and run everywhere.
Kubernetes is one layer of abstraction above containers. It is a distributed system that controls/manages containers.
My advice: because the landscape is huge... start learning and putting the pieces of the puzzle together by following a course. Below I have added some information from the:
Introduction to Kubernetes, free online course from The Linux Foundation.
Why do we need Kubernetes (and other orchestrators) above containers?
In the quality assurance (QA) environments, we can get away with running containers on a single host to develop and test applications. However, when we go to production, we do not have the same liberty, as we need to ensure that our applications:
Are fault-tolerant
Can scale, and do this on-demand
Use resources optimally
Can discover other applications automatically, and communicate with each other
Are accessible from the external world
Can update/rollback without any downtime.
Container orchestrators are the tools which group hosts together to form a cluster, and help us fulfill the requirements mentioned above.
Nowadays, there are many container orchestrators available, such as:
Docker Swarm: Docker Swarm is a container orchestrator provided by Docker, Inc. It is part of Docker Engine.
Kubernetes: Kubernetes was started by Google, but now, it is a part of the Cloud Native Computing Foundation project.
Mesos Marathon: Marathon is one of the frameworks to run containers at scale on Apache Mesos.
Amazon ECS: Amazon EC2 Container Service (ECS) is a hosted service provided by AWS to run Docker containers at scale on its infrastructrue.
Hashicorp Nomad: Nomad is the container orchestrator provided by HashiCorp.
Kubernetes is built on Docker technology. It is an orchestration tool for Docker container whereas Docker is a technology to create and deploy containers.
Docker, starting with a platform-as-a-service (PaaS) provider named dotCloud.
All in all, Kubernetes is related to the Docker container, allowing you to implement application portability and extensibility in container orchestration.
DOCKER
Easy and fast to install and configure
Functionality is provided and limited by the Docker API
Quick container deployment and scaling even in very large clusters
Automated internal load balancing through any node in the cluster
Simple shared local volumes
Kubernetes
Require some work to get up and running
Client, API and YAML definitions are unique to Kubernetes
Provides strong guarantees to cluster states at the expense of speed
To Enable load balancing requires manual service configuration
Volumes shared within pods
This is just a basic idea which at least explains the difference.If you want to go in depth see my posts
http://www.thecreativedev.com/an-introduction-to-kubernetes/
http://www.thecreativedev.com/learn-docker-works/
Docker and Kubernetes are complementary. Docker provides an open standard for packaging and distributing containerized applications, while Kubernetes provides for the orchestration and management of distributed, containerized applications created with Docker. In other words, Kubernetes provides the infrastructure needed to deploy and run applications built with Docker.

Docker usage in compose/swarm mode

I am quite new to docker and I need some help about distributing my application.
Consider this:
I have a pool of physical machines, each of them running the latest version of docker.
My "Application A" has several containers. To be clear in this definition, an application would be a database running in a container, 4 messaging containers and a master container. All 6 containers need to communicate between each other. The database, the messaging and etc containers would be the "services".
I can also have "Application B", "Application C" and "Application N...", that are slightly different in size and configuration from "Application A". Applications do not communicate between each other and are completely independent.
Requirements:
All applications "A,B,C..N" must use the same pool of physical machines.
Each service of each application must run in a different physical machine, if needed.
You may want to restrict how each service is allocated to each physical machine
I need to create applications "on the fly"
My first thought would be to use a docker-compose to define an application and several dockerfiles to define the services inside it. But if I do that, each application would be running in the same docker engine and therefore, the same physical machine.
I have read that you could deploy a docker compose into a docker swarm. In this case, docker swarm would act as a docker engine. However, I could not find any examples on how to do that and I am not sure of the limitations.
My second thought would be to use swarm mode. I would create a swarm, and run services on it. However, I would lose the the concept of "application". There would be a bunch of services thrown into the swarm and I could not manage how each of them communicate with each other.
So, given this problem:
Is there any assumption or statement I got wrong?
What is the recommended docker tools usage in the scenario?
It is possible to use Docker Compose with Docker Swarm Mode (Docker 1.12), but it is currently not completely compatible with it. Have a look at Docker Stacks and Bundles.
In the next version of Docker (1.13) there will also be the new release of Docker Compose v3, which will be compatible with Docker without Docker Compose. This will make it possible to deploy your Docker Compose file like this:
docker deploy --compose-file docker-compose.yml AppA
This is currently experimental but works quite fine with Docker 1-13-rc5. (Docker Releases)
A more detailed explanation of this can be found in this article.
For your requirements to have them all run on different hosts, this is possible with defining constraints in the docker service create (or in the Docker Compose v3) (See Docker Service Create - Constraints). But why do you need to have them run on different hosts?
It is possible to limit the CPU and memory usage that each service is able to use with --limit-cpu and --limit-memory.
If you want to play with Docker Swarm Mode you can create a swarm with Docker Machine on your local host. (Attention do not use the old Docker Swarm)

Platform to test with docker containers in developer environment

We are currently moving towards microservices with Docker from a monolith application running in JBoss. I want to know the platform/tools/frameworks to be used to test these Docker containers in developer environment. Also what tools should be used to deploy these containers to this developer test environment.
Is it a good option to use some thing like Kubernetes with chef/puppet/vagrant?
I think so. Make sure to get service discovery, logging and virtual networking right. For the former you can check out skydns. Docker now has a few logging plugins you can use for log management. For virtual networking you can look for Flannel and Weave.
You want service discovery because Kubernetes will schedule the containers the way it sees fit and you need some way of telling what IP/port your microservice will be at. Virtual networking make it so each container has it's own subnet thus preventing port clashes in case you have two containers with the same ports exposed in the same host (kubernetes won't let it clash, it will schedule containers to run until you have hosts with ports available, if you try to create more it just won't run).
Also, you can try the built-in cluster tools in Docker itself, like docker service, docker network commands and Docker Swarm.
Docker-machine helps in case you already have a VM infrastructure in place.
We have created and open-sourced a platform to develop and deploy docker based microservices.
It supports service discovery, clustering, load balancing, health checks, configuration management, diagnosing and mini-DNS.
We are using it in our local development environment and production environment on AWS. We have a Vagrant box with everything prepared so you can give it a try:
http://armada.sh
https://github.com/armadaplatform/armada

Resources