I want to use variable names in dot notation in Swift.
I'm wrestling with trying to make sense of JSON in Swift, and having a really hard time doing things that are so easy in JS (like cycling through objects, etc).
I have variables of custom types:
var questionConfiguration: QuestionConfiguration
var priorityConfiguration: PriorityConfiguration
Each of these types has an attribute, displayOrder, I want to access this dynamically. I have tried various things, including the following (i is a variable of type Int):
var configs = [self.questionConfiguration, self.priorityConfiguration]
print([configs[i]].displayOrder)
var configs = ["questionConfiguration", "priorityConfiguration"]
print([configs[i]].displayOrder)
How can I achieve this?
EDIT:
struct QuestionConfiguration: Codable {
var displayOrder: Int
}
struct PriorityConfiguration: Codable {
var displayOrder: Int
}
You can create a protocol for same property name then you can access it easily
protocol SameProp {
var displayOrder: Int {get set}
}
class QuestionConfiguration : SameProp {
var displayOrder : Int = 4
}
class PriorityConfiguration : SameProp {
var displayOrder : Int = 6
}
var questionConfiguration: QuestionConfiguration = QuestionConfiguration()
var priorityConfiguration: PriorityConfiguration = PriorityConfiguration()
var configs = [questionConfiguration, priorityConfiguration] as [SameProp]
for elements in configs{
print(elements.displayOrder) // will print 4 and 6
}
Swift is very particular about data types and I suspect you are experiencing challenges because of it.
When you do this:
var configs = [self.questionConfiguration, self.priorityConfiguration]
In Swift, all the elements in an array have to have the same type. You've not given Swift any hints about what types this array should contain so the compiler has to infer a type. QuestionConfiguration and PriorityConfiguration are two different types. So the compiler is likely to infer that configs is of type [Any] also called Array<Any>.
Then you try something like this:
configs[i].displayOrder (not sure why your code has the extra brackets)
But configs[i] is inferred to be of type Any and that type doesn't have a displayOrder property so the compiler complains.
You need to tell the compiler that these types share some properties. One way to do that would be to add a protocol that describes what they share:
protocol DisplayOrderable {
var displayOrder: Int { get }
}
struct QuestionConfiguration: DisplayOrderable, Codable {
var displayOrder: Int
}
struct PriorityConfiguration: DisplayOrderable, Codable {
var displayOrder: Int
}
then you could use
var configs: [any DisplayOrderable] = [self.questionConfiguration, self.priorityConfiguration]
And configs[i].displayOrder should work.
Sorry if the title is rather confusing, but I'm curious to know the difference between these two lines:
var title = String()
var title: String
Is one being initialized and one only be declared? Which is more correct?
For example, if I have a struct should I use one of the other?
So the reason I ask this is because I'm learning about how to grab some JSON from a url and then display it in my app. One of the new ways of doing so is using Decodable. So, I have a struct in a model class like so:
struct Videos: Decodable {
var title = String()
var number_of_views : Int
var thumbnail_image_name: String
var channel: Channel
var duration: Int
}
In another class I have this:
URLSession.shared.dataTask(with: url){(data,response,error) in
if(error != nil){
print(error!)
return
}
guard let data = data else { return }
do{
self.Videos2 = try JSONDecoder().decode([Videos].self, from: data)
//self.collectionView?.reloadData()
}catch let jsonErr{
print(jsonErr)
}
}.resume()
So, should I declare or initialize the variables in my struct? I'm assuming I should just declare them like so:
var title: String?
Would that be the correct syntax in my struct?
UPDATE:
I understand this question was more broad then I originally proposed it to be. I'm sorry about that, but thank you so much for all your great answers that clarified a lot up for me.
The difference is that : defines the type of your variable, whereas = assigns an actual value to the variable.
So:
var title = String()
This calls the initializer of the String type, creating a new String instance. It then assigns this value to title. The type of title is inferred to be String because you're assigning an object of type String to it; however, you could also write this line explicitly as:
var title: String = String()
This would mean you are declaring a title variable of type String, and assigning a new String to it.
var title: String
This simply says you're defining a variable of type String. However, you are not assigning a value to it. You will need to assign something to this variable before you use it, or you will get a compile error (and if this is a property rather than just a variable, you'll need to assign it before you get to the end of your type's init() method, unless it's optional with ? after it, in which case it gets implicitly initialized to nil).
EDIT: For your example, I'd probably declare all the variables using let and :, assuming that your JSON provides values for all of those properties. The initializer generated by Decodable should then set all the properties when you create the object. So, something like:
struct Videos: Decodable {
let title: String
let number_of_views : Int
let thumbnail_image_name: String
let channel: Int
let duration: Int
}
This initializes a value
var title = String()
This declares a value but does not initialize it
var title: String
If you attempt to use the latter, such as print(title), you will get a compiler error stating Variable 'title' used before being initialized
It does not matter whether the value is a class or a struct.
The = operator is the assignment operator, it assigns a value to the object on the left of the =
Typically, class or struct properties are declared but not initialized until the init() is called. A simple class might be
class MyClass {
let myProperty: String
init(aString: String) {
self.myProperty = aString
}
}
Whereas inside the scope of a function you may declare a local variable that only lives inside the scope of the function.
func doSomethingToAString(aString: String) -> String {
let extraString = "Something"
let amendedString = aString + extraString
return amendedString
}
In your specific example, the struct synthesizes an initializer that will allow you to initialize the struct with all the values needed to fill your properties. The initializer generated by Decodable should then set all the properties when you create a Videos struct, you will do it something like:
let aVideos = Videos(title: "My Title", number_of_views: 0, thumbnail_image_name: "ImageName", channel: Channel(), duration: 10)
Is one being initialized and one only be declared?
Yes, meaning that the declared cannot be used. If you tried to set a value for it, you would get a compile-time error:
variable 'title' passed by reference before being initialized
Which is more correct?
There is no rule of thumb to determine which is more correct, that would be depends on is there a need to initialize title directly.
On another hand, when it comes to declare properties for a class, saying var title = String() means that you are give title an initial value ("") which means that you are able to create an instance of this class directly, example:
class Foo {
var title = String()
}
let myFoo = Foo()
However, if title declared as var title: String, you will have to implement the init for Foo:
class Foo {
var title: String
init(title: String) {
self.title = title
}
}
let myFoo = Foo(title: "")
Also, you have an option to declare it as lazy:
lazy var title = String()
which means:
A lazy stored property is a property whose initial value is not
calculated until the first time it is used. You indicate a lazy stored
property by writing the lazy modifier before its declaration.
Properties - Lazy Stored Properties
Is there a way to print the runtime type of a variable in swift? For example:
var now = NSDate()
var soon = now.dateByAddingTimeInterval(5.0)
println("\(now.dynamicType)")
// Prints "(Metatype)"
println("\(now.dynamicType.description()")
// Prints "__NSDate" since objective-c Class objects have a "description" selector
println("\(soon.dynamicType.description()")
// Compile-time error since ImplicitlyUnwrappedOptional<NSDate> has no "description" method
In the example above, I'm looking for a way to show that the variable "soon" is of type ImplicitlyUnwrappedOptional<NSDate>, or at least NSDate!.
Update September 2016
Swift 3.0: Use type(of:), e.g. type(of: someThing) (since the dynamicType keyword has been removed)
Update October 2015:
I updated the examples below to the new Swift 2.0 syntax (e.g. println was replaced with print, toString() is now String()).
From the Xcode 6.3 release notes:
#nschum points out in the comments that the Xcode 6.3 release notes show another way:
Type values now print as the full demangled type name when used with
println or string interpolation.
import Foundation
class PureSwiftClass { }
var myvar0 = NSString() // Objective-C class
var myvar1 = PureSwiftClass()
var myvar2 = 42
var myvar3 = "Hans"
print( "String(myvar0.dynamicType) -> \(myvar0.dynamicType)")
print( "String(myvar1.dynamicType) -> \(myvar1.dynamicType)")
print( "String(myvar2.dynamicType) -> \(myvar2.dynamicType)")
print( "String(myvar3.dynamicType) -> \(myvar3.dynamicType)")
print( "String(Int.self) -> \(Int.self)")
print( "String((Int?).self -> \((Int?).self)")
print( "String(NSString.self) -> \(NSString.self)")
print( "String(Array<String>.self) -> \(Array<String>.self)")
Which outputs:
String(myvar0.dynamicType) -> __NSCFConstantString
String(myvar1.dynamicType) -> PureSwiftClass
String(myvar2.dynamicType) -> Int
String(myvar3.dynamicType) -> String
String(Int.self) -> Int
String((Int?).self -> Optional<Int>
String(NSString.self) -> NSString
String(Array<String>.self) -> Array<String>
Update for Xcode 6.3:
You can use the _stdlib_getDemangledTypeName():
print( "TypeName0 = \(_stdlib_getDemangledTypeName(myvar0))")
print( "TypeName1 = \(_stdlib_getDemangledTypeName(myvar1))")
print( "TypeName2 = \(_stdlib_getDemangledTypeName(myvar2))")
print( "TypeName3 = \(_stdlib_getDemangledTypeName(myvar3))")
and get this as output:
TypeName0 = NSString
TypeName1 = __lldb_expr_26.PureSwiftClass
TypeName2 = Swift.Int
TypeName3 = Swift.String
Original answer:
Prior to Xcode 6.3 _stdlib_getTypeName got the mangled type name of a variable. Ewan Swick's blog entry helps to decipher these strings:
e.g. _TtSi stands for Swift's internal Int type.
Mike Ash has a great blog entry covering the same topic.
Edit: A new toString function has been introduced in Swift 1.2 (Xcode 6.3).
You can now print the demangled type of any type using .self and any instance using .dynamicType:
struct Box<T> {}
toString("foo".dynamicType) // Swift.String
toString([1, 23, 456].dynamicType) // Swift.Array<Swift.Int>
toString((7 as NSNumber).dynamicType) // __NSCFNumber
toString((Bool?).self) // Swift.Optional<Swift.Bool>
toString(Box<SinkOf<Character>>.self) // __lldb_expr_1.Box<Swift.SinkOf<Swift.Character>>
toString(NSStream.self) // NSStream
Try calling YourClass.self and yourObject.dynamicType.
Reference: https://devforums.apple.com/thread/227425.
Swift 3.0
let string = "Hello"
let stringArray = ["one", "two"]
let dictionary = ["key": 2]
print(type(of: string)) // "String"
// Get type name as a string
String(describing: type(of: string)) // "String"
String(describing: type(of: stringArray)) // "Array<String>"
String(describing: type(of: dictionary)) // "Dictionary<String, Int>"
// Get full type as a string
String(reflecting: type(of: string)) // "Swift.String"
String(reflecting: type(of: stringArray)) // "Swift.Array<Swift.String>"
String(reflecting: type(of: dictionary)) // "Swift.Dictionary<Swift.String, Swift.Int>"
Is this what you're looking for?
println("\(object_getClassName(now))");
It prints "__NSDate"
UPDATE: Please note this no longer seems to work as of Beta05
My current Xcode is Version 6.0 (6A280e).
import Foundation
class Person { var name: String; init(name: String) { self.name = name }}
class Patient: Person {}
class Doctor: Person {}
var variables:[Any] = [
5,
7.5,
true,
"maple",
Person(name:"Sarah"),
Patient(name:"Pat"),
Doctor(name:"Sandy")
]
for variable in variables {
let typeLongName = _stdlib_getDemangledTypeName(variable)
let tokens = split(typeLongName, { $0 == "." })
if let typeName = tokens.last {
println("Variable \(variable) is of Type \(typeName).")
}
}
Output:
Variable 5 is of Type Int.
Variable 7.5 is of Type Double.
Variable true is of Type Bool.
Variable maple is of Type String.
Variable Swift001.Person is of Type Person.
Variable Swift001.Patient is of Type Patient.
Variable Swift001.Doctor is of Type Doctor.
As of Xcode 6.3 with Swift 1.2, you can simply convert type values into the full demangled String.
toString(Int) // "Swift.Int"
toString(Int.Type) // "Swift.Int.Type"
toString((10).dynamicType) // "Swift.Int"
println(Bool.self) // "Swift.Bool"
println([UTF8].self) // "Swift.Array<Swift.UTF8>"
println((Int, String).self) // "(Swift.Int, Swift.String)"
println((String?()).dynamicType)// "Swift.Optional<Swift.String>"
println(NSDate) // "NSDate"
println(NSDate.Type) // "NSDate.Type"
println(WKWebView) // "WKWebView"
toString(MyClass) // "[Module Name].MyClass"
toString(MyClass().dynamicType) // "[Module Name].MyClass"
You can still access the class, through className (which returns a String).
There are actually several ways to get the class, for example classForArchiver, classForCoder, classForKeyedArchiver (all return AnyClass!).
You can't get the type of a primitive (a primitive is not a class).
Example:
var ivar = [:]
ivar.className // __NSDictionaryI
var i = 1
i.className // error: 'Int' does not have a member named 'className'
If you want to get the type of a primitive, you have to use bridgeToObjectiveC(). Example:
var i = 1
i.bridgeToObjectiveC().className // __NSCFNumber
You can use reflect to get information about object.
For example name of object class:
var classname = reflect(now).summary
Xcode 8 Swift 3.0 use type(of:)
let className = "\(type(of: instance))"
I had luck with:
let className = NSStringFromClass(obj.dynamicType)
SWIFT 5
With the latest release of Swift 3 we can get pretty descriptions of type names through the String initializer. Like, for example print(String(describing: type(of: object))). Where object can be an instance variable like array, a dictionary, an Int, a NSDate, an instance of a custom class, etc.
Here is my complete answer: Get class name of object as string in Swift
That question is looking for a way to getting the class name of an object as string but, also i proposed another way to getting the class name of a variable that isn't subclass of NSObject. Here it is:
class Utility{
class func classNameAsString(obj: Any) -> String {
//prints more readable results for dictionaries, arrays, Int, etc
return String(describing: type(of: obj))
}
}
I made a static function which takes as parameter an object of type Any and returns its class name as String :) .
I tested this function with some variables like:
let diccionary: [String: CGFloat] = [:]
let array: [Int] = []
let numInt = 9
let numFloat: CGFloat = 3.0
let numDouble: Double = 1.0
let classOne = ClassOne()
let classTwo: ClassTwo? = ClassTwo()
let now = NSDate()
let lbl = UILabel()
and the output was:
diccionary is of type Dictionary
array is of type Array
numInt is of type Int
numFloat is of type CGFloat
numDouble is of type Double
classOne is of type: ClassOne
classTwo is of type: ClassTwo
now is of type: Date
lbl is of type: UILabel
In Xcode 8, Swift 3.0
Steps:
1. Get the Type:
Option 1:
let type : Type = MyClass.self //Determines Type from Class
Option 2:
let type : Type = type(of:self) //Determines Type from self
2. Convert Type to String:
let string : String = "\(type)" //String
In Swift 3.0, you can use type(of:), as dynamicType keyword has been removed.
To get a type of object or class of object in Swift, you must need to use a type(of: yourObject)
type(of: yourObject)
When using Cocoa (not CocoaTouch), you can use the className property for objects that are subclasses of NSObject.
println(now.className)
This property is not available for normal Swift objects, which aren't subclasses of NSObject (and in fact, there is no root id or object type in Swift).
class Person {
var name: String?
}
var p = Person()
println(person.className) // <- Compiler error
In CocoaTouch, at this time there is not a way to get a string description of the type of a given variable. Similar functionality also does not exist for primitive types in either Cocoa or CocoaTouch.
The Swift REPL is able to print out a summary of values including its type, so it is possible this manner of introspection will be possible via an API in the future.
EDIT: dump(object) seems to do the trick.
The top answer doesn't have a working example of the new way of doing this using type(of:. So to help rookies like me, here is a working example, taken mostly from Apple's docs here - https://developer.apple.com/documentation/swift/2885064-type
doubleNum = 30.1
func printInfo(_ value: Any) {
let varType = type(of: value)
print("'\(value)' of type '\(varType)'")
}
printInfo(doubleNum)
//'30.1' of type 'Double'
I've tried some of the other answers here but milage seems to very on what the underling object is.
However I did found a way you can get the Object-C class name for an object by doing the following:
now?.superclass as AnyObject! //replace now with the object you are trying to get the class name for
Here is and example of how you would use it:
let now = NSDate()
println("what is this = \(now?.superclass as AnyObject!)")
In this case it will print NSDate in the console.
I found this solution which hopefully might work for someone else.
I created a class method to access the value. Please bear in mind this will work for NSObject subclass only. But at least is a clean and tidy solution.
class var className: String!{
let classString : String = NSStringFromClass(self.classForCoder())
return classString.componentsSeparatedByString(".").last;
}
In the latest XCode 6.3 with Swift 1.2, this is the only way I found:
if view.classForCoder.description() == "UISegment" {
...
}
Many of the answers here do not work with the latest Swift (Xcode 7.1.1 at time of writing).
The current way of getting the information is to create a Mirror and interrogate that. For the classname it is as simple as:
let mirror = Mirror(reflecting: instanceToInspect)
let classname:String = mirror.description
Additional information about the object can also be retrieved from the Mirror. See http://swiftdoc.org/v2.1/type/Mirror/ for details.
Swift version 4:
print("\(type(of: self)) ,\(#function)")
// within a function of a class
Thanks #Joshua Dance
In lldb as of beta 5, you can see the class of an object with the command:
fr v -d r shipDate
which outputs something like:
(DBSalesOrderShipDate_DBSalesOrderShipDate_ *) shipDate = 0x7f859940
The command expanded out means something like:
Frame Variable (print a frame variable) -d run_target (expand dynamic types)
Something useful to know is that using "Frame Variable" to output variable values guarantees no code is executed.
I've found a solution for self-developed classes (or such you have access to).
Place the following computed property within your objects class definition:
var className: String? {
return __FILE__.lastPathComponent.stringByDeletingPathExtension
}
Now you can simply call the class name on your object like so:
myObject.className
Please note that this will only work if your class definition is made within a file that is named exactly like the class you want the name of.
As this is commonly the case the above answer should do it for most cases. But in some special cases you might need to figure out a different solution.
If you need the class name within the class (file) itself you can simply use this line:
let className = __FILE__.lastPathComponent.stringByDeletingPathExtension
Maybe this method helps some people out there.
Based on the answers and comments given by Klass and Kevin Ballard above, I would go with:
println(_stdlib_getDemangledTypeName(now).componentsSeparatedByString(".").last!)
println(_stdlib_getDemangledTypeName(soon).componentsSeparatedByString(".").last!)
println(_stdlib_getDemangledTypeName(soon?).componentsSeparatedByString(".").last!)
println(_stdlib_getDemangledTypeName(soon!).componentsSeparatedByString(".").last!)
println(_stdlib_getDemangledTypeName(myvar0).componentsSeparatedByString(".").last!)
println(_stdlib_getDemangledTypeName(myvar1).componentsSeparatedByString(".").last!)
println(_stdlib_getDemangledTypeName(myvar2).componentsSeparatedByString(".").last!)
println(_stdlib_getDemangledTypeName(myvar3).componentsSeparatedByString(".").last!)
which will print out:
"NSDate"
"ImplicitlyUnwrappedOptional"
"Optional"
"NSDate"
"NSString"
"PureSwiftClass"
"Int"
"Double"
let i: Int = 20
func getTypeName(v: Any) -> String {
let fullName = _stdlib_demangleName(_stdlib_getTypeName(i))
if let range = fullName.rangeOfString(".") {
return fullName.substringFromIndex(range.endIndex)
}
return fullName
}
println("Var type is \(getTypeName(i)) = \(i)")
Swift 4:
// "TypeName"
func stringType(of some: Any) -> String {
let string = (some is Any.Type) ? String(describing: some) : String(describing: type(of: some))
return string
}
// "ModuleName.TypeName"
func fullStringType(of some: Any) -> String {
let string = (some is Any.Type) ? String(reflecting: some) : String(reflecting: type(of: some))
return string
}
Usage:
print(stringType(of: SomeClass())) // "SomeClass"
print(stringType(of: SomeClass.self)) // "SomeClass"
print(stringType(of: String())) // "String"
print(fullStringType(of: String())) // "Swift.String"
There appears to be no generic way to print the type name of an arbitrary value's type. As others have noted, for class instances you can print value.className but for primitive values it appears that at runtime, the type information is gone.
For instance, it looks as if there's not a way to type: 1.something() and get out Int for any value of something. (You can, as another answer suggested, use i.bridgeToObjectiveC().className to give you a hint, but __NSCFNumber is not actually the type of i -- just what it will be converted to when it crosses the boundary of an Objective-C function call.)
I would be happy to be proven wrong, but it looks like the type checking is all done at compile time, and like C++ (with RTTI disabled) much of the type information is gone at runtime.
This is how you get a type string of your object or Type which is consistent and takes into account to which module the object definition belongs to or nested in. Works in Swift 4.x.
#inline(__always) func typeString(for _type: Any.Type) -> String {
return String(reflecting: type(of: _type))
}
#inline(__always) func typeString(for object: Any) -> String {
return String(reflecting: type(of: type(of: object)))
}
struct Lol {
struct Kek {}
}
// if you run this in playground the results will be something like
typeString(for: Lol.self) // __lldb_expr_74.Lol.Type
typeString(for: Lol()) // __lldb_expr_74.Lol.Type
typeString(for: Lol.Kek.self)// __lldb_expr_74.Lol.Kek.Type
typeString(for: Lol.Kek()) // __lldb_expr_74.Lol.Kek.Type
Not exactly what you are after, but you can also check the type of the variable against Swift types like so:
let object: AnyObject = 1
if object is Int {
}
else if object is String {
}
For example.
Xcode 7.3.1, Swift 2.2:
String(instanceToPrint.self).componentsSeparatedByString(".").last
I am quite new in Swift. And I create a class(for example):
class Fraction{
var a: Int
init(a:Int){
self.a = a
}
func toString() -> String{
return "\(self.a)"
}
}
and I also build a in other class function:
class func A_plusplus(f:Fraction){
f.a++
}
Then in the executive class I write:
var object = Fraction(a:10)
print("before run func = " + object.toString())
XXXclass.A_plusplus(object)
print("after ran func =" + object.toString() )
So the console output is
before run func = 10; after ran func =11
The question is how can I just send a copy of the "object" to keep its value which equal to 10
And if functions are always pass-by-reference, why we still need the keyword: "inout"
what does difference between A_plusplus(&object)//[if I make the parameter to be a inout parameter] and A_plusplus(object)
Universally, I don't want to use struct. Although this will solve my
problem exactly, I do pass-by-value rarely.So I don't want program's
copying processes slow my user's phone down :(
And It seems conforming the NSCopying protocol is a good option.But
I don't know how to implement the function:
func copyWithZone(zone:
NSZone)-> AnyObject? correctly
If your class is subclass of NSObject,better to use NSCopying
class Fraction:NSObject,NSCopying{
var a:Int
var b:NSString?
required init(a:Int){
self.a = a
}
func toString() -> String{
return "\(self.a)"
}
func copyWithZone(zone: NSZone) -> AnyObject {
let theCopy=self.dynamicType.init(a: self.a)
theCopy.b = self.b?.copy() as? NSString
return theCopy
}
}
class XXXclass{
class func A_plusplus(f:Fraction){
f.a++
f.b = "after"
}
}
var object = Fraction(a:10)
object.b = "before"
print("before run func = " + object.toString())
print(object.b!) //“Before”
XXXclass.A_plusplus(object.copy() as! Fraction)
print("after ran func =" + object.toString() )
print(object.b!)//“Before”
If it is just a common swift class,You have to create a copy method
class Fraction{
var a: Int
init(a:Int){
self.a = a
}
func toString() -> String{
return "\(self.a)"
}
func copy()->Fraction{
return Fraction(a: self.a)
}
}
class XXXclass{
class func A_plusplus(f:Fraction){
f.a++
}
}
var object = Fraction(a:10)
print("before run func = " + object.toString())
XXXclass.A_plusplus(object.copy())
print("after ran func =" + object.toString() )
To make it clear,you have to know that there are mainly two types in swift
Reference types. Like Class instance,function type
Value types,Like struct and others(Not class instance or function type)
If you pass in a Reference types,you pass in the copy of Reference,it still point to the original object.
If you pass in a Copy type,you pass in the copy of value,so it has nothing to do with the original value
Let us talk about inout,if you use it,it pass in the same object or value.It has effect on Value type
func add(inout input:Int){
input++
}
var a = 10
print(a)//10
add(&a)
print(a)//11
Swift has a new concept so called "struct"
You can define Fraction as struct (Not class)
And
struct Fraction{
...
}
var object = Fraction(a:10)
var object1 = object //then struct in swift is value type, so object1 is copy of object (not reference)
And if you use struct then try to use inout in A_plusplus function
Hope this will help you.
how can I just send a copy of the "object" to keep its value which equal to 10
In Swift classes and functions are always passed by reference. Structs, enums and primitive types are passed by value. See this answer.
You can't pass an object by value. You would have to manually copy it before passing it by reference (if that's what you really want).
Another way is to turn your class into a struct, since it would then be passed by value. However, keep in mind there a few other differences between classes and structs, and it might not necessarily be what you want.
And if functions are always pass-by-reference, why we still need the keyword: "inout"
According to the swift documentation, inout is used when
you want a function to modify a parameter’s value, and you want those changes to persist after the function call has ended, define that parameter as an in-out parameter instead.
So in practice with inout you can pass a value type (such as struct or primitive) by reference. You shouldn't really use this very often. Swift provides tuples, that could be used instead.
what does difference between A_plusplus(&object)//[if I make the parameter to be a inout parameter] and A_plusplus(object)
There is no difference for your A_plusplus function. In that function you don't modify the parameter f itself, you modify the f.a property.
The following example shows the effect of using inout when passing a class object. Both functions are the same, differing only in its parameter definition.
class Person {
var name: String
init(name: String) { self.name = name }
}
var me = Person(name: "Lennon") // Must be var to be passed as inout
// Normal object by reference with a var
func normalCall(var p: Person) {
// We sure are able to update p's properties,
// and they will be reflected back to me
p.name = "McCartney"
// Now p points to a new object different from me,
// changes won't be reflected back to me
p = Person(name: "Ringo")
}
// Inout object reference by value
func inoutCall(inout p: Person) {
// We still can update p's properties,
p.name = "McCartney"
// p is an alias to me, updates made will persist to me
p = Person(name: "Ringo")
}
print("\(me.name)") //--> Lennon
normalCall(me)
print("\(me.name)") //--> McCartney
inoutCall(&me)
print("\(me.name)") //--> Ringo
In normalCall p and me are different variables that happen to point to the same object. When you instantiate and assign a new object to p, they no longer refer to the same object. Hence, further changes to this new object will not be reflected back to me.
Stating that p is a var argument just means that its value can change throughout the function, it does not mean the new value will be assigned to what was passed as argument.
On the other hand, in inoutCall you can think of p and me as aliases. As such, assigning a new object to p is the exact same as assigning a new object to me. Any and every change to p is persisted in me after the function ends.
I had some older Swift code that used to compile and work where I was using the .append to build out a data structure dynamically. After upgrading to a few compiler versions newer I am getting the dreaded "Extra Argument ' ' in call" error. I reduced the code down to this:
struct EHSearch {
let EHcategory : String = ""
let EHname : String = ""
}
var myEHSearch = [EHSearch]()
// Call to dynamically append the results
// Extra argument: 'EHcategory' in call
myEHSearch.append(EHSearch(EHcategory: "Food", EHname: "Joes Crab Shack"))
I can't see anything so far in searching on what has changed to cause this one so seeking guidance here.
Because you have let in your struct.
Define your structure like this:
struct EHSearch {
var EHcategory : String = ""
var EHname : String = ""
}
If you have constants in your struct, you can not provide them initial value while creating new structure instances. The automatically-generated member-wise initializer doesn't accept let members as parameters of the initializer of struct.
It depends on your intentions with the struct's properties. Do you want them to be mutable or not?
If yes, then #sasquatch's answer will do.
If not, then you need to ensure a value is assigned to them only once. As you already do that in the struct declaration (the default values), you can't assign new values to them. But being a struct, they don't need to have default values - moreover, struct automatically receive a memberwise initializer. https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Initialization.html
So here is the variant for immutable properties:
struct EHSearch {
let EHcategory : String
let EHname : String
}
var myEHSearch = [EHSearch]()
// Call to dynamically append the results
// Extra argument: 'EHcategory' in call
myEHSearch.append(EHSearch(EHcategory: "Food", EHname: "Joes Crab Shack"))
The "Extra Argument" error you're seeing is because the compiler already has values for the properties so it doesn't expect any new ones. Here is the "middle" way - one property has a default value whilst the other doesn't - which should make it clearer:
struct EHSearch {
let EHcategory : String = ""
let EHname : String
}
var myEHSearch = [EHSearch]()
// Call to dynamically append the results
// Extra argument: 'EHcategory' in call
myEHSearch.append(EHSearch(EHname: "Joes Crab Shack"))