Convert a Picture to RGB Dots Image (Half Toning Like Effect) - image-processing

I'm trying to show students how the RGB color model works to create a particular color (or moreover to convince them that it really does). So I want to take a picture and convert each pixel to an RGB representation so that when you zoom in, instead of a single colored pixel, you see the RGB colors.
I've done this but for some very obvious reasons the converted picture is either washed out or darker than the original (which is a minor inconvenience but I think it would be more powerful if I could get it to be more like the original).
Here are two pictures "zoomed out":
Here is a "medium zoom", starting to show the RGB artifacts in the converted picture:
And here is a picture zoomed in to the point that you can clearly see individual pixels and the RGB squares:
You'll notice the constant color surrounding the pixels; that is the average RGB of the picture. I put that there so that you could see individual pixels (otherwise you just see rows/columns of shades of red/green/blue). If I take that space out completely, the image is even darker and if I replace it with white, then the image looks faded (when zoomed out).
I know why displaying this way causes it to be darker: a "pure red" will come with a completely black blue and green. In a sense if I were to take a completely red picture, it would essentially be 1/3 the brightness of the original.
So my question is:
1: Are there any tools available that already do this (or something similar)?
2: Any ideas on how to get the converted image closer to the original?
For the 2nd question, I could of course just increase the brightness for each "RGB pixel" (the three horizontal stripes in each square), but by how much? I certainly can't just multiply the RGB ints by 3 (in apparent compensation for what I said above). I wonder if there is some way to adjust my background color to compensate for me? Or would it just have to be something that needs to be fiddled with for each picture?

You were correct to assume you could retain the brightness by multiplying everything by 3. There's just one small problem: the RGB values in an image use gamma correction, so the intensity is not linear. You need to de-gamma the values, multiply, then gamma correct them again.
You also need to lose the borders around each pixel. Those borders take up 7/16 of the final image which is just too much to compensate for. I tried rotating every other pixel by 90 degrees, and while it gives the result a definite zig-zag pattern it does make clear where the pixel boundaries are.
When you zoom out in an image viewer you might see the gamma problem too. Many viewers don't bother to do gamma correction when they resize. For an in-depth explanation see Gamma error in picture scaling, and use the test image supplied at the end. It might be better to forgo scaling altogether and simply step back from the monitor.
Here's some Python code and a crop from the resulting image.
from PIL import Image
im = Image.open(filename)
im2 = Image.new('RGB', (im.size[0]*3, im.size[1]*3))
ld1 = im.load()
ld2 = im2.load()
for y in range(im.size[1]):
for x in range(im.size[0]):
rgb = ld1[x,y]
rgb = [(c/255)**2.2 for c in rgb]
rgb = [min(1.0,c*3) for c in rgb]
rgb = tuple(int(255*(c**(1/2.2))) for c in rgb)
x2 = x*3
y2 = y*3
if (x+y) & 1:
for x3 in range(x2, x2+3):
ld2[x3,y2] = (rgb[0],0,0)
ld2[x3,y2+1] = (0,rgb[1],0)
ld2[x3,y2+2] = (0,0,rgb[2])
else:
for y3 in range(y2, y2+3):
ld2[x2,y3] = (rgb[0],0,0)
ld2[x2+1,y3] = (0,rgb[1],0)
ld2[x2+2,y3] = (0,0,rgb[2])

Don't waste so much time on this. You cannot make two images look the same if you have less information in one of them. You still have your computer that will subsample your image in weird ways while zooming out.
Just pass a magnifying glass through the class so they can see for themselves on their phones or other screens or show pictures of a screen in different magnification levels.
If you want to stick to software, triple the resolution of your image, don't use empty rows and columns or at least make them black to increase contrast and scale the RGB components to full range.

Why don't you keep the magnified image for the background ? This will let the two images look identical when zoomed out, while the RGB strips will remain clearly visible in the zoom-in.
If not, use the average color over the whole image to keep a similar intensity, but the washing effect will remain.
An intermediate option is to apply a strong lowpass filter on the image to smoothen all details and use that as the background, but I don't see a real advantage over the first approach.

Related

Add a darkening filter to an image OpenCV

I apologize in advance if a question like this was already answered. All of my searches for adding filters resulted in how to add dog faces. I wasn't sure what the proper terminology is.
What techniques do phone apps (such as Snapchat's text overlay or a QR code program for android) use to "darken" a section of the image? I am looking to replace this functionality in OpenCV. Is it possible to do this with other colors? (Such as adding a blue accent)
Example: Snapchat text overlay
https://i.imgur.com/9NHfiBY.jpg
Another Example: Google Allo QR code search
https://i.imgur.com/JnMzvWT.jpg
Any questions or comments would be appreciated
In General:
Change of brightness can be achieved via Addition/Subtraction.
If you want to brighten your Image, you can add a specific amount (e.g. 20) to each channel of the image. The other way around for darkening (Subtraction).
If you would subtract 50 from each channel of the image, you would get:
To darken pixel dependent you could also use Division. This is how a division with 1.5 would change the image:
Another way would be to use the Exponential Operator. This operator takes the value of each channel and will then calculate pixel^value. The resulting value will be then scaled back to the 0-255 range (for 8 bit RGB) via looking the highest value and then calculating the scaling factor via 255/resulting value.
If use it with values > one, it will darker the image. This is because
Here a chart how the exponential operator will change the value of each pixel. As you can see, values for the operator above 1 will darken the image (meaning the channels will be shifted towards lower values), whilst values below 0 will shift all pixels towards white and thus increase brightness.
Here is an example image for application of the operator using the value 0.5, meaning you take each pixel^0.5 and scale it back to the range of 0-255:
For a value of 2 you get:
Sadly i can not help you further, because i am not familiar with OpenCV, but it should be easy enough to implement yourself.
For your question about tinting: Yes, that is also possible. Instead of shifting towards white, you would have to shift the values of each pixel towards the respective color. I recommend to inform you about blending.
Original image taken from here
Update: I was able to darken an image by blending an image matrix with a black matrix. After that, it was just a matter of darkening certain parts of the image to replicate an overlay.
The lower the alpha value is, the darker the image.
Result
void ApplyFilter(cv::Mat &inFrame, cv::Mat &outFrame, double alpha)
{
cv::Mat black = cv::Mat(inFrame.rows, inFrame.cols, inFrame.type(), 0.0);
double beta = (1.0 - alpha);
cv::addWeighted(inFrame, alpha, black, beta, 0.0, outFrame);
}
https://docs.opencv.org/2.4/doc/tutorials/core/adding_images/adding_images.html
Thank you for the help everyone!

computer vision - Counting small circles in an image

The image below has many circles. Click and zoom in to see the circles.
https://drive.google.com/open?id=1ox3kiRX5hf2tHDptWfgcbMTAHKCDizSI
What I want is counting the circles using any free language, such as python.
Is there a function or idea to do it?
Edit: I came up with a better solution, partially inspired by this answer below. I thought of this method originally (as noted in the OP comments) but I decided against it. The original image was just not good enough quality for it. However I improved that method and it works brilliantly for the better quality image. The original approach is first, and then the new approach at the bottom.
First approach
So here's a general approach that seems to work well, but definitely just gives estimates. This assumes that circles are roughly the same size.
First, the image is mostly blue---so it seems reasonable to just do the analysis on the blue channel. Thresholding the blue channel, in this case, using Otsu thresholding (which determines an optimal threshold value without input) seems to work very well. This isn't too much of a surprise since the distribution of color values is pretty much binary. Check the mask that results from it!
Then, do a connected component analysis on the mask to get the area of each component (component = white blob in the mask). The statistics returned from connectedComponentsWithStats() give (among other things) the area, which is exactly what we need. Then we can simply count the circles by estimating how many circles fit in a given component based on its area. Also note that I'm taking the statistics for every label except the first one: this is the background label 0, and not any of the white blobs.
Now, how large in area is a single circle? It would be best to let the data tell us. So you could compute a histogram of all the areas, and since there are more single circles than anything else, there will be a high concentration around 250-270 pixels or so for the area. Or you could just take an average of all the areas between something like 50 and 350 which should also get you in a similar ballpark.
Really in this histogram you can see the demarcations between single circles, double circles, triple, and so on quite easily. Only the larger components will give pretty rough estimates. And in fact, the area doesn't seem to scale exactly linearly. Blobs of two circles are slightly larger than two single circles, and blobs of three are larger still than three single circles, and so on, so this makes it a little difficult to estimate nicely, but rounding should still keep us close. If you want you could include a small multiplication parameter that increases as the area increases to account for that, but that would be hard to quantify without going through the histogram analytically...so, I didn't worry about this.
A single circle area divided by the average single circle area should be close to 1. And the area of a 5-circle group divided by the average circle area should be close to 5. And this also means that small insignificant components, that are 1 or 10 or even 100 pixels in area, will not count towards the total since round(50/avg_circle_size) < 1/2, so those will round down to a count of 0. Thus I should just be able to take all the component areas, divide them by the average circle size, round, and get to a decent estimate by summing them all up.
import cv2
import numpy as np
img = cv2.imread('circles.png')
mask = cv2.threshold(img[:, :, 0], 255, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
stats = cv2.connectedComponentsWithStats(mask, 8)[2]
label_area = stats[1:, cv2.CC_STAT_AREA]
min_area, max_area = 50, 350 # min/max for a single circle
singular_mask = (min_area < label_area) & (label_area <= max_area)
circle_area = np.mean(label_area[singular_mask])
n_circles = int(np.sum(np.round(label_area / circle_area)))
print('Total circles:', n_circles)
This code is simple and effective for rough counts.
However, there are definitely some assumptions here about the groups of circles compared to a normal circle size, and there are issues where circles that are at the boundaries will not be counted correctly (these aren't well defined---a two circle blob that is half cut off will look more like one circle---no clear way to count or not count these with this method). Further I just used automatic thresholding via Otsu here; you could get (probably better) results with more careful color filtering. Additionally in the mask generated by Otsu, some circles that are masked have a few pixels removed from their center. Morphology could add these pixels back in, which would give you a (slightly larger) more accurate area for the single circle components. Either way, I just wanted to give the general idea towards how you could easily estimate this with minimal code.
New approach
Before, the goal was to count circles. This new approach instead counts the centers of the circles. The general idea is you threshold and then flood fill from a background pixel to fill in the background (flood fill works like the paint bucket tool in photo editing apps), that way you only see the centers, as shown in this answer below.
However, this relies on global thresholding, which isn't robust to local lighting changes. This means that since some centers are brighter/darker than others, you won't always get good results with a single threshold.
Here I've created an animation to show looping through different threshold values; watch as some centers appear and disappear at different times, meaning you get different counts depending on the threshold you choose (this is just a small patch of the image, it happens everywhere):
Notice that the first blob to appear in the top left actually disappears as the threshold increases. However, if we actually OR each frame together, then each detected pixel persists:
But now every single speck appears, so we should clean up the mask each frame so that we remove single pixels as they come (otherwise they may build up and be hard to remove later). Simple morphological opening with a small kernel will remove them:
Applied over the whole image, this method works incredibly well and finds almost every single cell. There are only three false positives (detected blob that's not a center) and two misses I can spot, and the code is very simple. The final thing to do after the mask has been created is simply count the components, minus one for the background. The only user input required here is a single point to flood fill from that is in the background (seed_pt in the code).
img = cv2.imread('circles.png', 0)
seed_pt = (25, 25)
fill_color = 0
mask = np.zeros_like(img)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
for th in range(60, 120):
prev_mask = mask.copy()
mask = cv2.threshold(img, th, 255, cv2.THRESH_BINARY)[1]
mask = cv2.floodFill(mask, None, seed_pt, fill_color)[1]
mask = cv2.bitwise_or(mask, prev_mask)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
n_centers = cv2.connectedComponents(mask)[0] - 1
print('There are %d cells in the image.'%n_centers)
There are 874 cells in the image.
One possible solution would be to read the image using OpenCV, get its grayscale, then use Canny edge detection and perform countour finding in OpenCV. This will return a list of countours. It would look something like:
import cv2
image = cv2.imread('path-to-your-image')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# tweak the parameters of the GaussianBlur for best performance
blurred = cv2.GaussianBlur(gray, (7, 7), 0)
# again, try different values here
edged = cv2.Canny(blurred, 20, 140)
(_, contours, _) = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
print(len(contours))
If you have all images like this - consider thresholding it, not necessarily by auto threshold-seeking algorithm like Otsu, but rather using simplest threshold by a given threshold value. Yes, before thresholding you have to convert your color input to gray-scale, or take one of color channels. Then based on few experiments with channels and threshold values - determine threshold value to have circles with holes in monochrome thresholding result. Based on your png image I found value of 81 (intensity of gray varies from 0 to 255) to be great to threshold gray-scale version of your input to have such binary image with holes in place, as described above.
Then simply count those holes.
Holes can be determined by seed-filling white area, connected to image border. As result you will have white hole connected components on black background - so simply count them.
More details you can find here http://www.leptonica.com/filling.html and use leptonica primitives to do thresholding, hole counting an so on.

subtract one color from another in RGB color space

I would like to subtract color from another. For example, I have two image 100X100 pixel, one with color R:236 G:226 B:43, and another R:63 G:85 B:235. I would like to cut color R:236 G:226 B:43 from R:63 G:85 B:235. But I know it can't subtract like the mathematically method, by layer R:236-63, G:226-85, B:43-235 because i found that the color that less than 0 and more than 255 can't define.
I found another color space in RYB color space.but i don't know how it really work.
Thank you for your help.
You cannot actually subtract colors. But you surely can detect their difference. I suppose this is what you need, anyway.
Here are some thoughts and remarks:
Convert your images to HSV colorspace which transforms RGB values to
Hue, Saturation and Brightness (Value).
All your images should be around a yellowish color (near 60 deg. on
the Hue circle) so they should all have about the same Hue with
minor differences.
Typically if all images are taken at constant lighting conditions
they should have the same Value (brightness).
Saturation, which corresponds to the mixture of white in a color,
typically represents how intense you perceive a color to be. This
would typically be of about the same value for all your images in
constant lighting conditions.
According to your first description, the main difference should be detected in the Hue channel.
A good thing about HSV is that H (hue) is represented by a counterclockwise circle and colors are just positions on this circle, so positive and negative values all make sense (search google for a description of HSV colorspace to get a view of how it looks and works).
You may either detect differences by a subtraction that will lead you to a value either positive either negative, or by taking the absolute value of the subtraction, which will just give a measure of the difference of the two values of Hue (but without any information on the direction of the difference). If you need the direction of the difference you should just stick to a plain subtraction.
For example:
Hue_1 - Hue_2 = Hue_3 (typically a small value for your problem)
if Hue_3 > 0 this means that Hue_1 is a bit towards Green if
Hue_3 < 0 this means that Hue_1 is a bit towards Red
Of course you may also need to take a look at the differences in the other channels, S and V to see if colors are more saturated or more bright, but I cannot be sure you need to do this since we haven't seen any images here.
Of course you can do a lot more sophisticated things...Like apply clustering or classification techniques on the detected hues and classify them to classes according to your problem needs...

highlight overexposed areas in a UIImage

I'm making a simple camera app for iOS and MAC. After the user snaps a picture it generates a UIimage on iOS (NSImage on MAC). I want to be able to highlight the areas in the image that is over exposed. Basically the overexposed areas would blink when that image is displayed.
Anybody knows the algorithm on how to tell where on the image is overexposed. Do I just add up the R,G,B values at each pixel. And if the total at each pixel is greater than a certain amount, then start blinking that pixel, and do that for all pixels?
Or do I have to do some complicated math from outer space to figure it out?
Thanks
rough
you will have to traverse the image, depending on your desired accuracy and precision, you can combine skipping and averaging pixels to come up with a smooth region...
it will depend on the details of you color space, but imagine YUV space (because you only need to look at one value, the Y or luminance):
if 240/255 is considered white, then a greater value of say 250/255 would be over exposed and you could mark it, then display in an overlay.

Algorithm for determining the prominant colour of a photograph

When we look at a photo of a group of trees, we are able to identify that the photo is predominantly green and brown, or for a picture of the sea we are able to identify that it is mostly blue.
Does anyone know of an algorithm that can be used to detect the prominent color or colours in a photo?
I can envisage a 3D clustering algorithm in RGB space or something similar. I was wondering if someone knows of an existing technique.
Convert the image from RGB to a color space with brightness and saturation separated (HSL/HSV)
http://en.wikipedia.org/wiki/HSL_and_HSV
Then find the dominating values for the hue component of each pixel. Make a histogram for the hue values of each pixel and analyze in which angle region the peaks fall in. A large peak in the quadrant between 180 and 270 degrees means there is a large portion of blue in the image, for example.
There can be several difficulties in determining one dominant color. Pathological example: an image whose left half is blue and right half is red. Also, the hue will not deal very well with grayscales obviously. So a chessboard image with 50% white and 50% black will suffer from two problems: the hue is arbitrary for a black/white image, and there are two colors that are exactly 50% of the image.
It sounds like you want to start by computing an image histogram or color histogram of the image. The predominant color(s) will be related to the peak(s) in the histogram.
You might want to change the image from RGB to indexed, then you could use a regular histogram and detect the pics (Matlab does this with rgb2ind(), as you probably already know), and then the problem would be reduced to your regular "finding peaks in an array".
Then
n = hist(Y,nbins) bins the elements in vector Y into 10 equally spaced containers and returns the number of elements in each container as a row vector.
Those values in n will give you how many elements in each bin. Then it's just a matter of fiddling with the number of bins to make them wide enough, and with how many elements in each would make you count said bin as a predominant color, then taking the bins that contain those many elements, calculating the index that corresponds with their middle, and converting it to RGB again.
Whatever you're using for your processing probably has similar functions to those
Average all pixels in the image.
Remove all pixels that are farther away from the average color than standard deviation.
GOTO 1 with remaining pixels until arbitrarily few are left (1 or maybe 1%).
You might also want to pre-process the image, for example apply high-pass filter (removing only very low frequencies) to even out lighting in the photo — http://en.wikipedia.org/wiki/Checker_shadow_illusion

Resources