Quick docker container refresh workflow - docker

This is probably a duplicate, but all answers that I saw didn't work for me.
I'm using docker (17.06.2-ce), docker-compose (1.16.1).
I have an image of solr which I use for development and testing purposes (and on CI too).
When making changes to the image I need to rebuild the image and recreate containers, so that the containers use the latest possible image, which, in turn, takes the latest possible code from the local repo.
I've created my own image which is based on official solr-docker image. The repo is a folder with additional steps that I'm applying to the image, such as copying files and making changes to existing configs using sed.
I'm working in the repo and have the containers running in the background.
When I need to refresh the containers, I usually do these commands
sudo docker-compose stop
sudo docker rm $(sudo docker ps -a -q)
sudo docker rmi $(sudo docker images -q)
sudo docker-compose up
The above 4 commands is the only way it works for me. All other approaches that I've tried din't rebuild the images and didn't create the containers based off the new, rebuilt images. In other words, the code in the image would be stale.
Questions:
Is it possible to refresh the image + rebuild the container using fewer commands?
Every time I'm running above 4 commands, docker would download ~500MB of dependencies. Is it possible to not to download them and just rebuild the image using updated local code and existing cached dependencies?

I usually do docker-compose rm && docker-compose build && docker-compose up for recreating docker containers: it won't download 500mb.

You can use docker-compose down which does the following:
down Stop and remove containers, networks, images, and volumes
Therefore the command to use will be: docker-compose down --rmi local && docker-compose up
The --rmi local option will remove the built image, and thus forcing a rebuild on up

Related

How to restart the ROS docker container with GUI enabled [duplicate]

Let's say I have pulled the official mysql:5.6.21 image.
I have deployed this image by creating several docker containers.
These containers have been running for some time until MySQL 5.6.22 is released. The official image of mysql:5.6 gets updated with the new release, but my containers still run 5.6.21.
How do I propagate the changes in the image (i.e. upgrade MySQL distro) to all my existing containers? What is the proper Docker way of doing this?
After evaluating the answers and studying the topic I'd like to summarize.
The Docker way to upgrade containers seems to be the following:
Application containers should not store application data. This way you can replace app container with its newer version at any time by executing something like this:
docker pull mysql
docker stop my-mysql-container
docker rm my-mysql-container
docker run --name=my-mysql-container --restart=always \
-e MYSQL_ROOT_PASSWORD=mypwd -v /my/data/dir:/var/lib/mysql -d mysql
You can store data either on host (in directory mounted as volume) or in special data-only container(s). Read more about it
About volumes (Docker docs)
Tiny Docker Pieces, Loosely Joined (by Tom Offermann)
How to deal with persistent storage (e.g. databases) in Docker (Stack Overflow question)
Upgrading applications (eg. with yum/apt-get upgrade) within containers is considered to be an anti-pattern. Application containers are supposed to be immutable, which shall guarantee reproducible behavior. Some official application images (mysql:5.6 in particular) are not even designed to self-update (apt-get upgrade won't work).
I'd like to thank everybody who gave their answers, so we could see all different approaches.
I don't like mounting volumes as a link to a host directory, so I came up with a pattern for upgrading docker containers with entirely docker managed containers. Creating a new docker container with --volumes-from <container> will give the new container with the updated images shared ownership of docker managed volumes.
docker pull mysql
docker create --volumes-from my_mysql_container [...] --name my_mysql_container_tmp mysql
By not immediately removing the original my_mysql_container yet, you have the ability to revert back to the known working container if the upgraded container doesn't have the right data, or fails a sanity test.
At this point, I'll usually run whatever backup scripts I have for the container to give myself a safety net in case something goes wrong
docker stop my_mysql_container
docker start my_mysql_container_tmp
Now you have the opportunity to make sure the data you expect to be in the new container is there and run a sanity check.
docker rm my_mysql_container
docker rename my_mysql_container_tmp my_mysql_container
The docker volumes will stick around so long as any container is using them, so you can delete the original container safely. Once the original container is removed, the new container can assume the namesake of the original to make everything as pretty as it was to begin.
There are two major advantages to using this pattern for upgrading docker containers. Firstly, it eliminates the need to mount volumes to host directories by allowing volumes to be directly transferred to an upgraded containers. Secondly, you are never in a position where there isn't a working docker container; so if the upgrade fails, you can easily revert to how it was working before by spinning up the original docker container again.
Just for providing a more general (not mysql specific) answer...
In short
Synchronize with service image registry (https://docs.docker.com/compose/compose-file/#image):
docker-compose pull
Recreate container if docker-compose file or image have changed:
docker-compose up -d
Background
Container image management is one of the reason for using docker-compose
(see https://docs.docker.com/compose/reference/up/)
If there are existing containers for a service, and the service’s configuration or image was changed after the container’s creation, docker-compose up picks up the changes by stopping and recreating the containers (preserving mounted volumes). To prevent Compose from picking up changes, use the --no-recreate flag.
Data management aspect being also covered by docker-compose through mounted external "volumes" (See https://docs.docker.com/compose/compose-file/#volumes) or data container.
This leaves potential backward compatibility and data migration issues untouched, but these are "applicative" issues, not Docker specific, which have to be checked against release notes and tests...
I would like to add that if you want to do this process automatically (download, stop and restart a new container with the same settings as described by #Yaroslav) you can use WatchTower. A program that auto updates your containers when they are changed https://github.com/v2tec/watchtower
Consider for this answers:
The database name is app_schema
The container name is app_db
The root password is root123
How to update MySQL when storing application data inside the container
This is considered a bad practice, because if you lose the container, you will lose the data. Although it is a bad practice, here is a possible way to do it:
1) Do a database dump as SQL:
docker exec app_db sh -c 'exec mysqldump app_schema -uroot -proot123' > database_dump.sql
2) Update the image:
docker pull mysql:5.6
3) Update the container:
docker rm -f app_db
docker run --name app_db --restart unless-stopped \
-e MYSQL_ROOT_PASSWORD=root123 \
-d mysql:5.6
4) Restore the database dump:
docker exec app_db sh -c 'exec mysql -uroot -proot123' < database_dump.sql
How to update MySQL container using an external volume
Using an external volume is a better way of managing data, and it makes easier to update MySQL. Loosing the container will not lose any data. You can use docker-compose to facilitate managing multi-container Docker applications in a single host:
1) Create the docker-compose.yml file in order to manage your applications:
version: '2'
services:
app_db:
image: mysql:5.6
restart: unless-stopped
volumes_from: app_db_data
app_db_data:
volumes: /my/data/dir:/var/lib/mysql
2) Update MySQL (from the same folder as the docker-compose.yml file):
docker-compose pull
docker-compose up -d
Note: the last command above will update the MySQL image, recreate and start the container with the new image.
Similar answer to above
docker images | awk '{print $1}' | grep -v 'none' | grep -iv 'repo' | xargs -n1 docker pull
Here's what it looks like using docker-compose when building a custom Dockerfile.
Build your custom Dockerfile first, appending a next version number to differentiate. Ex: docker build -t imagename:version . This will store your new version locally.
Run docker-compose down
Edit your docker-compose.yml file to reflect the new image name you set at step 1.
Run docker-compose up -d. It will look locally for the image and use your upgraded one.
-EDIT-
My steps above are more verbose than they need to be. I've optimized my workflow by including the build: . parameter to my docker-compose file. The steps looks this now:
Verify that my Dockerfile is what I want it to look like.
Set the version number of my image name in my docker-compose file.
If my image isn't built yet: run docker-compose build
Run docker-compose up -d
I didn't realize at the time, but docker-compose is smart enough to simply update my container to the new image with the one command, instead of having to bring it down first.
If you do not want to use Docker Compose, I can recommend portainer. It has a recreate function that lets you recreate a container while pulling the latest image.
You need to either rebuild all the images and restart all the containers, or somehow yum update the software and restart the database. There is no upgrade path but that you design yourself.
Taking from http://blog.stefanxo.com/2014/08/update-all-docker-images-at-once/
You can update all your existing images using the following command pipeline:
docker images | awk '/^REPOSITORY|\<none\>/ {next} {print $1}' | xargs -n 1 docker pull
Make sure you are using volumes for all the persistent data (configuration, logs, or application data) which you store on the containers related to the state of the processes inside that container. Update your Dockerfile and rebuild the image with the changes you wanted, and restart the containers with your volumes mounted at their appropriate place.
Tried a bunch of things from here, but this worked out for me eventually.
IF you have AutoRemove: On on the Containers you can't STOP and EDIT the contianers, or a Service is running that can't be stopped even momentarily,
You must:
PULL latest image --> docker pull [image:latest]
Verify if the correct image is pulled, you can see the UNUSED tag in the Portainer Images section
UPDATE the service using Portainer or CLI and make sure you use LATEST VERSION of the image, Portainer will give you the option to do same.
THis would not only UPDATE the Container with Latest Image, but also keep the Service Running.
This is something I've also been struggling with for my own images. I have a server environment from which I create a Docker image. When I update the server, I'd like all users who are running containers based on my Docker image to be able to upgrade to the latest server.
Ideally, I'd prefer to generate a new version of the Docker image and have all containers based on a previous version of that image automagically update to the new image "in place." But this mechanism doesn't seem to exist.
So the next best design I've been able to come up with so far is to provide a way to have the container update itself--similar to how a desktop application checks for updates and then upgrades itself. In my case, this will probably mean crafting a script that involves Git pulls from a well-known tag.
The image/container doesn't actually change, but the "internals" of that container change. You could imagine doing the same with apt-get, yum, or whatever is appropriate for you environment. Along with this, I'd update the myserver:latest image in the registry so any new containers would be based on the latest image.
I'd be interested in hearing whether there is any prior art that addresses this scenario.
Update
This is mainly to query the container not to update as building images is the way to be done
I had the same issue so I created docker-run, a very simple command-line tool that runs inside a docker container to update packages in other running containers.
It uses docker-py to communicate with running docker containers and update packages or run any arbitrary single command
Examples:
docker run --rm -v /var/run/docker.sock:/tmp/docker.sock itech/docker-run exec
by default this will run date command in all running containers and return results but you can issue any command e.g. docker-run exec "uname -a"
To update packages (currently only using apt-get):
docker run --rm -v /var/run/docker.sock:/tmp/docker.sock itech/docker-run update
You can create and alias and use it as a regular command line
e.g.
alias docker-run='docker run --rm -v /var/run/docker.sock:/tmp/docker.sock itech/docker-run'

What have to be done to deliver on Docker and avoid to accumulate images?

I use Docker to execute a website I make.
When a release have to be delivered, I have to build a new Docker image and start a new Container from it.
The problem is that images et containers are accumulating and taking huge space.
Besides the delivery, I need to stop the running container and delete it and the source image too.
I don't need Docker command lines but a checklist or a process to not forget anything.
For instance:
-Stop running container
-Delete stopped container
-Delete old image
-Build new image
-Start new container
Am I missing something?
I'm not used to Docker, maybe there are best practices to this pretty classical use case?
The local workflow that works for me is:
Do core development locally, without Docker. Things like interactive debuggers and live reloading work just fine in a non-Docker environment without weird hacks or root access, and installing the tools I need usually involves a single brew or apt-get step. Make all of my pytest/junit/rspec/jest/... tests pass.
docker build a new image.
docker stop && docker rm the old container.
docker run a new container.
When the number of old images starts to bother me, docker system prune.
If you're using Docker Compose, you might be able to replace the middle set of steps with docker-compose up --build.
In a production environment, the sequence is slightly different:
When your CI system sees a new commit, after running the repository's local tests, it docker build && docker push a new image. The image has a unique tag, which could be a timestamp or source control commit ID or version tag.
Your deployment system (could be the CI system or a separate CD system) tells whatever cluster manager you're using (Kubernetes, a Compose file with Docker Swarm, Nomad, an Ansible playbook, ...) about the new version tag. The deployment system takes care of stopping, starting, and removing containers.
If your cluster manager doesn't handle this already, run a cron job to docker system prune.
You should use:
docker system df
to investigate the space used by docker.
After that you can use
docker system prune -a --volumes
to remove unused components. Containers you should stop them yourself before doing this, but this way you are sure to cover everything.

Cached Docker image?

I created my own image and pushed it to my repo on docker hub. I deleted all the images on my local box with docker rmi -f ...... Now docker images shows an empty list.
But when I do docker run xxxx/yyyy:zzzz it doesn't pull from my remote repo and starts a container right away.
Is there any cache or something else? If so, what is the way to clean it all?
Thank you
I know this is old now but thought I'd share still.
Docker will contain all those old images in a Cache unless you specifically build them with --no-cache, to clear the cache down you can simply run docker system prune -a -f and it should clear everything down including the cache.
Note: this will clear everything down including containers.
You forced removal of the image with -f. Since you used -f I'm assuming that the normal rmi failed because containers based on that image already existed. What this does is just untag the image. The data still exists as a diff for the container.
If you do a docker ps -a you should see containers based on that image. If you start more containers based on that same previous ID, the image diff still exists so you don't need to download anything. But once you remove all those containers, the diff will disappear and the image will be gone.

How to get docker-compose to always re-create containers from fresh images?

My docker images are built on a Jenkins CI server and are pushed to our private Docker Registry. My goal is to provision environments with docker-compose which always start the originally built state of the images.
I am currently using docker-compose 1.3.2 as well as 1.4.0 on different machines but we also used older versions previously.
I always used the docker-compose pull && docker-compose up -d commands to fetch the fresh images from the registry and start them up. I believe my preferred behaviour was working as expected up to a certain point in time, but since then docker-compose up started to re-run previously stopped containers instead of starting the originally built images every time.
Is there a way to get rid of this behaviour? Could that way be one which is wired in the docker-compose.yml configuration file to not depend "not forgetting" something on the command line upon every invocation?
ps. Besides finding a way to achieve my goal, I would also love to know a bit more about the background of this behaviour. I think the basic idea of Docker is to build an immutable infrastructure. The current behaviour of docker-compose just seem to plain clash with this approach.. or do I miss some points here?
docker-compose up --force-recreate is one option, but if you're using it for CI, I would start the build with docker-compose rm -f to stop and remove the containers and volumes (then follow it with pull and up).
This is what I use:
docker-compose rm -f
docker-compose pull
docker-compose up --build -d
# Run some tests
./tests
docker-compose stop -t 1
The reason containers are recreated is to preserve any data volumes that might be used (and it also happens to make up a lot faster).
If you're doing CI you don't want that, so just removing everything should get you want you want.
Update: use up --build which was added in docker-compose 1.7
The only solution that worked for me was the --no-cache flag:
docker-compose build --no-cache
This will automatically pull a fresh image from the repo. It also won't use the cached version that is prebuilt with any parameters you've been using before.
By current official documentation there is a shortcut that stops and removes containers, networks, volumes, and images created by up, if they are already stopped or partially removed and so on, then it will do the trick too:
docker-compose down
Then if you have new changes on your images or Dockerfiles use:
docker-compose build --no-cache
Finally:docker-compose up
In one command: docker-compose down && docker-compose build --no-cache && docker-compose up
docker-compose up --build # still use image cache
OR
docker-compose build --no-cache # never use cache
You can pass --force-recreate to docker compose up, which should use fresh containers.
I think the reasoning behind reusing containers is to preserve any changes during development. Note that Compose does something similar with volumes, which will also persist between container recreation (a recreated container will attach to its predecessor's volumes). This can be helpful, for example, if you have a Redis container used as a cache and you don't want to lose the cache each time you make a small change. At other times it's just confusing.
I don't believe there is any way you can force this from the Compose file.
Arguably it does clash with immutable infrastructure principles. The counter-argument is probably that you don't use Compose in production (yet). Also, I'm not sure I agree that immutable infra is the basic idea of Docker, although it's certainly a good use case/selling point.
docker-compose up --build --force-recreate
I claimed 3.5gb space in ubuntu AWS through this.
clean docker
docker stop $(docker ps -qa) && docker system prune -af --volumes
build again
docker build .
docker-compose build
docker-compose up
Also if the compose has several services and we only want to force build one of those:
docker-compose build --no-cache <service>
together with --force-recreate,
you might want to consider using this flag too:
-V, --renew-anon-volumes Recreate anonymous volumes instead of retrieving
data from the previous containers.
I'm not sure from which version this flag is available, so check your docker-compose up --help if you have it or not
$docker-compose build
If there is something new it will be rebuilt.

How to upgrade docker container after its image changed

Let's say I have pulled the official mysql:5.6.21 image.
I have deployed this image by creating several docker containers.
These containers have been running for some time until MySQL 5.6.22 is released. The official image of mysql:5.6 gets updated with the new release, but my containers still run 5.6.21.
How do I propagate the changes in the image (i.e. upgrade MySQL distro) to all my existing containers? What is the proper Docker way of doing this?
After evaluating the answers and studying the topic I'd like to summarize.
The Docker way to upgrade containers seems to be the following:
Application containers should not store application data. This way you can replace app container with its newer version at any time by executing something like this:
docker pull mysql
docker stop my-mysql-container
docker rm my-mysql-container
docker run --name=my-mysql-container --restart=always \
-e MYSQL_ROOT_PASSWORD=mypwd -v /my/data/dir:/var/lib/mysql -d mysql
You can store data either on host (in directory mounted as volume) or in special data-only container(s). Read more about it
About volumes (Docker docs)
Tiny Docker Pieces, Loosely Joined (by Tom Offermann)
How to deal with persistent storage (e.g. databases) in Docker (Stack Overflow question)
Upgrading applications (eg. with yum/apt-get upgrade) within containers is considered to be an anti-pattern. Application containers are supposed to be immutable, which shall guarantee reproducible behavior. Some official application images (mysql:5.6 in particular) are not even designed to self-update (apt-get upgrade won't work).
I'd like to thank everybody who gave their answers, so we could see all different approaches.
I don't like mounting volumes as a link to a host directory, so I came up with a pattern for upgrading docker containers with entirely docker managed containers. Creating a new docker container with --volumes-from <container> will give the new container with the updated images shared ownership of docker managed volumes.
docker pull mysql
docker create --volumes-from my_mysql_container [...] --name my_mysql_container_tmp mysql
By not immediately removing the original my_mysql_container yet, you have the ability to revert back to the known working container if the upgraded container doesn't have the right data, or fails a sanity test.
At this point, I'll usually run whatever backup scripts I have for the container to give myself a safety net in case something goes wrong
docker stop my_mysql_container
docker start my_mysql_container_tmp
Now you have the opportunity to make sure the data you expect to be in the new container is there and run a sanity check.
docker rm my_mysql_container
docker rename my_mysql_container_tmp my_mysql_container
The docker volumes will stick around so long as any container is using them, so you can delete the original container safely. Once the original container is removed, the new container can assume the namesake of the original to make everything as pretty as it was to begin.
There are two major advantages to using this pattern for upgrading docker containers. Firstly, it eliminates the need to mount volumes to host directories by allowing volumes to be directly transferred to an upgraded containers. Secondly, you are never in a position where there isn't a working docker container; so if the upgrade fails, you can easily revert to how it was working before by spinning up the original docker container again.
Just for providing a more general (not mysql specific) answer...
In short
Synchronize with service image registry (https://docs.docker.com/compose/compose-file/#image):
docker-compose pull
Recreate container if docker-compose file or image have changed:
docker-compose up -d
Background
Container image management is one of the reason for using docker-compose
(see https://docs.docker.com/compose/reference/up/)
If there are existing containers for a service, and the service’s configuration or image was changed after the container’s creation, docker-compose up picks up the changes by stopping and recreating the containers (preserving mounted volumes). To prevent Compose from picking up changes, use the --no-recreate flag.
Data management aspect being also covered by docker-compose through mounted external "volumes" (See https://docs.docker.com/compose/compose-file/#volumes) or data container.
This leaves potential backward compatibility and data migration issues untouched, but these are "applicative" issues, not Docker specific, which have to be checked against release notes and tests...
I would like to add that if you want to do this process automatically (download, stop and restart a new container with the same settings as described by #Yaroslav) you can use WatchTower. A program that auto updates your containers when they are changed https://github.com/v2tec/watchtower
Consider for this answers:
The database name is app_schema
The container name is app_db
The root password is root123
How to update MySQL when storing application data inside the container
This is considered a bad practice, because if you lose the container, you will lose the data. Although it is a bad practice, here is a possible way to do it:
1) Do a database dump as SQL:
docker exec app_db sh -c 'exec mysqldump app_schema -uroot -proot123' > database_dump.sql
2) Update the image:
docker pull mysql:5.6
3) Update the container:
docker rm -f app_db
docker run --name app_db --restart unless-stopped \
-e MYSQL_ROOT_PASSWORD=root123 \
-d mysql:5.6
4) Restore the database dump:
docker exec app_db sh -c 'exec mysql -uroot -proot123' < database_dump.sql
How to update MySQL container using an external volume
Using an external volume is a better way of managing data, and it makes easier to update MySQL. Loosing the container will not lose any data. You can use docker-compose to facilitate managing multi-container Docker applications in a single host:
1) Create the docker-compose.yml file in order to manage your applications:
version: '2'
services:
app_db:
image: mysql:5.6
restart: unless-stopped
volumes_from: app_db_data
app_db_data:
volumes: /my/data/dir:/var/lib/mysql
2) Update MySQL (from the same folder as the docker-compose.yml file):
docker-compose pull
docker-compose up -d
Note: the last command above will update the MySQL image, recreate and start the container with the new image.
Similar answer to above
docker images | awk '{print $1}' | grep -v 'none' | grep -iv 'repo' | xargs -n1 docker pull
Here's what it looks like using docker-compose when building a custom Dockerfile.
Build your custom Dockerfile first, appending a next version number to differentiate. Ex: docker build -t imagename:version . This will store your new version locally.
Run docker-compose down
Edit your docker-compose.yml file to reflect the new image name you set at step 1.
Run docker-compose up -d. It will look locally for the image and use your upgraded one.
-EDIT-
My steps above are more verbose than they need to be. I've optimized my workflow by including the build: . parameter to my docker-compose file. The steps looks this now:
Verify that my Dockerfile is what I want it to look like.
Set the version number of my image name in my docker-compose file.
If my image isn't built yet: run docker-compose build
Run docker-compose up -d
I didn't realize at the time, but docker-compose is smart enough to simply update my container to the new image with the one command, instead of having to bring it down first.
If you do not want to use Docker Compose, I can recommend portainer. It has a recreate function that lets you recreate a container while pulling the latest image.
You need to either rebuild all the images and restart all the containers, or somehow yum update the software and restart the database. There is no upgrade path but that you design yourself.
Taking from http://blog.stefanxo.com/2014/08/update-all-docker-images-at-once/
You can update all your existing images using the following command pipeline:
docker images | awk '/^REPOSITORY|\<none\>/ {next} {print $1}' | xargs -n 1 docker pull
Make sure you are using volumes for all the persistent data (configuration, logs, or application data) which you store on the containers related to the state of the processes inside that container. Update your Dockerfile and rebuild the image with the changes you wanted, and restart the containers with your volumes mounted at their appropriate place.
Tried a bunch of things from here, but this worked out for me eventually.
IF you have AutoRemove: On on the Containers you can't STOP and EDIT the contianers, or a Service is running that can't be stopped even momentarily,
You must:
PULL latest image --> docker pull [image:latest]
Verify if the correct image is pulled, you can see the UNUSED tag in the Portainer Images section
UPDATE the service using Portainer or CLI and make sure you use LATEST VERSION of the image, Portainer will give you the option to do same.
THis would not only UPDATE the Container with Latest Image, but also keep the Service Running.
This is something I've also been struggling with for my own images. I have a server environment from which I create a Docker image. When I update the server, I'd like all users who are running containers based on my Docker image to be able to upgrade to the latest server.
Ideally, I'd prefer to generate a new version of the Docker image and have all containers based on a previous version of that image automagically update to the new image "in place." But this mechanism doesn't seem to exist.
So the next best design I've been able to come up with so far is to provide a way to have the container update itself--similar to how a desktop application checks for updates and then upgrades itself. In my case, this will probably mean crafting a script that involves Git pulls from a well-known tag.
The image/container doesn't actually change, but the "internals" of that container change. You could imagine doing the same with apt-get, yum, or whatever is appropriate for you environment. Along with this, I'd update the myserver:latest image in the registry so any new containers would be based on the latest image.
I'd be interested in hearing whether there is any prior art that addresses this scenario.
Update
This is mainly to query the container not to update as building images is the way to be done
I had the same issue so I created docker-run, a very simple command-line tool that runs inside a docker container to update packages in other running containers.
It uses docker-py to communicate with running docker containers and update packages or run any arbitrary single command
Examples:
docker run --rm -v /var/run/docker.sock:/tmp/docker.sock itech/docker-run exec
by default this will run date command in all running containers and return results but you can issue any command e.g. docker-run exec "uname -a"
To update packages (currently only using apt-get):
docker run --rm -v /var/run/docker.sock:/tmp/docker.sock itech/docker-run update
You can create and alias and use it as a regular command line
e.g.
alias docker-run='docker run --rm -v /var/run/docker.sock:/tmp/docker.sock itech/docker-run'

Resources