How to power nodemcu devkit using battery - esp8266

I like software and I am comfortable writing lua code for nodemcu devkit. But I am not a hardware guy.
I need to setup the nodemcu so that it is a standalone module, ie powered by a battery. What is the best way to do this so that the whole thing is as small as possible? Which battery should I use(If I need to continuously run the nodemcu for 2 hours with wifi ON)? How to connect the battery with the nodemcu, ie any regulator needed?
Right now I am powering nodemcu via USB. I researched this in google, but couldn't find a satisfactory solution.
I am using this nodemcu devkit
Please point me to the correct forum, if this is the wrong place to ask this question

The easiest would be to NOT use that devkit but use one with a LiPo connector instead e.g. https://www.adafruit.com/product/2821. An alternative would be to use WeMos D1 minis with a LiPo/battery shield.
If you want to stick to your devkit you "just" have to make sure you feed 3.3V to the 3.3V pin. Since batteries deliver no stable voltage over time you need to place some kind of buck/boost converter (step-down/step-up) between the battery and the module.
You could of course also target the VIN pin which expects 5V but that would be less efficient if you used a LiPo battery. First, the external converter would boost from the LiPo's ~3.7V to 5V. Then the devkits internal converter would have to bring this down to 3.3V again.
Furthermore, if you feed the ESP8266 from batteries you want to pay attention to any power that'd be lost along the way. With the L7805 voltage regulator for example there is a constant 'quiescent' current draw of 6mA. That may be ok if your source is a power adapter but less ideal when it's a battery. Buck/boost converters are more efficient.

If you just need it to stand alone, would you consider using a phone charger? Just simply plug in the USB cable to any phone charger that you can find. That way it will provide stable power for as long as you want.
In case you really want to use a battery. Then you will need a 7805 regulator IC. This will step down your voltage to 5V. Then direct this to Vin Pin on the NodeMCU. I believe you should get 3.3V out of the 3v3 pin.

Related

ESP8266 Node MCU powered by battery

I am new to ESP8266 and started just building basic devices using it. However I am using USB 5V wall adapter as nodeMCU has USB UART converter to 3.3V.
If I want to make it battery powered what is simple , small ( in volume so that it can fit along with nodemcu and sensors in a small case) and economical approach that keeps my nodemcu still safe?
-One option I can think of is to connect a Li-ion battery of 3.7V to VIN.
-Another one is to use bigger voltage and use a converter to convert it down to around 5V and then use that to connect to VIN.
Please let me know if this works ? else if there is any better option please do suggest. Also if you are referring to any items/products please help give the exact model numbers so that I can search on internet to consider buying them.
Lastly I am not much aware of electric circuits & terminology yet ( learning them), so please help explain me in basic terms possible.
Ps: this question was seen on stackoverflow some times but I couldnt find one single consolidated answer and am confused by it. Appreciate your understanding.
Thanks,
Sridhar.
This really would be better suited for the electronics sister site or a esp8266.com forum but for what it's wort here's my input.
IMHO the most convenient option you have is to buy a devkit with a LiPo connector. I recommend a WeMOS D1 mini plus a fitting battery shield. An alternative is the Adafruit Feather HUZZAH.
It can sometimes be a bit of a challenge to find the right connectors for those boards. Gotcha! different revisions of those boards might use different connectors. Currently the WeMOS battery shield uses a 2 pin JST PH 2.0mm.
No, you cannot power a NodeMCU using a 3.7v li-ion battery directly. A fully charged Li-ion battery outputs a voltage of 4.2v. The NodeMCU board has a (5v and above) vin slot along with two 3.6v slots. If you directly connect the battery to the 3.6v, it may fry the NodeMCU board. So typically, there are 3 ways you can connect the battery without frying your board in this scenario:
You can use a boost converter to convert the 4.2v output to 5v. Then connect it to vin. This will draw more current and battery discharges quickly (eg: MT3608 step up boost converter).
You can use a buck converter to convert the 4.2v to a steady 3.6v (eg: LM2596 step down converter).
Finally, the most efficient way is to connect a 3.3v LDO in middle. The difference between using a buck and LDO is, buck provides a constant and steady 3.6v output, where as LDO's output depends on the input voltage from battery (eg: S111733PI).

How to capture raw signal from wireless router?

I have seen several projects now which derive novel spatial information from radio data collected from a typical wireless router:
http://wisee.cs.washington.edu/
http://www.extremetech.com/extreme/133936-using-wifi-to-see-through-walls
The idea of using a wireless router as a sort of passive radar is fantastic.
I am very interested in experimenting with data collected from a wireless router myself, but there is little information on how to go about actually interfacing with a wireless router and getting a raw stream of information collected by the device. Similar questions have been asked on here before, but I am yet to see a satisfactory answer.
I don't have the rep points necessary to link to the other questions but see:
'Capture Raw Signal from WiFi card as You Would a Sound Card'
'raw wifi “signal data” access'
I am looking for a solution that would let me use a low-cost device such as the oh so common WRT54G wireless router. If your answer involves custom radio hardware, you needn't bother posting.
As far as I know, the only option using a commodity hardware is to use Intel 5300 Wifi card. You can get the complex CSI (amplitude and phase info therein) from the three antenna on it from a sample of subcarriers (OFDM). You can take a look at this site:
http://dhalperi.github.io/linux-80211n-csitool/
If you read the wisee research paper you will find the platform they use for the system, it is USRP N210 from Ettus plus GNU radio software.
So it is not your usual WiFi AP they are using but the SDR solution this question also hints about.
WiFi devices are build to handle physical layer in silicon and the monitor mode is the best thing you can get without going the SDR path. You can get quite a lot of information from it - the radiotap header contains for example received signal strength and receiving antenna information. But if you really want to explore physical layer of WiFi then commodity hardware is not going to cut it.

iOS-Arduino communication: any cheap solution?

I'd like to have an iPhone and an Arduino-based device talk to each other. Here are the requirements:
I want to fully rely on iPhone's built-in components without any peripherals (for example, HiJack).
The less configuration before the two can communicate, the better. This means a WiFi-based is not desirable, because we'll need to set up Wi-Fi credentials for the Arduino beforehand.
Bitrate is not important. Only a few bytes are exchanged.
As cheap as possible.
I see that Bluetooth 4.0 LE (for example, Stack Overflow question iPhone - Any examples of communicating with an Arduino board using Bluetooth?) meets my requirements, but are there any cheaper solutions?
One thing that came into my mind is sound - the way Chirp used to share data between two iOS devices, but I don't know if is feasible on Arduino and, if it is, how much it would be. Any other solutions?
I can think of a few options:
Bluetooth, you can get a cheap one from eBay for about $10
Wi-Fi using Electric Imp (cost around $30), which is very easy to setup using the brilliant BlinkUp technique. See the project ElectricImp, control central heating via iPhone for an example.
Chirp is a brilliant idea as well. From a hardware prospective I see it is feasible to do in Arduino; you just need a MIC circuit ($8) and speaker.
However, the real challenge is the software side, i.e., the algorithm that you will use to encode data as sound and vice versa. If such algorithm requires intensive calculation, you might not be able to do it in Arduino, and you can consider using an ARM-based microcontroller.

Emulate GPS or a serial device

Is it possible to get location data out of Google Gears, Google Gelocation API or any other web location API (such as Fire Eagle) in such a format that it appears to other software as a GPS device?
It occured to me reading these answers to my question regarding WiFi location finding, on Super User, that if I could emulate a GPS unit, many of these web services could act as a 'poor-mans' GPS to otherwise less useful software that requires it.
Is GPSD an option?
Preferably OSX & Python, but I would be interested in any implementation.
There is a very similar thread on a Python mailinglist that mentions Windows virtual COM ports and discusses Unix's pseudo-tty capabilities. If the app(s) you want to use let you type in a specific tty device file, this may be the easiest route. (Short of asking the authors to provide a plugin API for what you're trying to do, or buying yourself a $20 bluetooth GPS mouse.)
Are you using OS X?
There is a project macosxvirtualserialport on Google code that provides a graphical wrapper around some of the features of a utility called socat. I'd recommend taking a look at socat if you see potential in the pseudo-tty route. I believe you could use socat to link a pipe from a Python program to a pseudo-tty.
Most native Mac apps will be querying IOServiceMatching for a device with kIOSerialBSDRS232Type, and I doubt that a pseudo-tty will show up as an IOKit service.
In this case, unless you can find a project that has already implemented such a thing, you will need to implement a driver as described in this How to create virtual COM port thread. If you're going to the trouble of create a device driver, you would want to base it on IOKit because of that likely IOServiceMatching query. You can find the Apple16X50Serial project mentioned in that post at the top of Apple's open source code list (go to the main page and pick an older OS release if you want to target something pre-10.6).
If your app is most useful with realtime data (e.g. the RouteBuddy app mentioned in the Python mailinglist thread can log current positions) then you will want to fetch updates from your web sources (hopefully they support long-polling) and convert them to basic NMEA RMC sentences. You do not want to do this from inside your driver code. Instead, divide your work up into kernel-land and user-land pieces that can communicate, and put as little of the code as possible into the kernel part.
If you want to let apps both read and write to these web services, your best bet would probably be to simulate a Garmin device. Garmin has more-or-less documented their protocol in the IntfSpec.pdf file included with their Device Interface SDK. Again, you'd want to split as much as you could into user-space code.
I was unable to find a project or utility that implements the kernel side of an IOKit-based virtual serial interface, but I'd be surprised if there wasn't one hiding somewhere out there. Unfortunately, most of the answers I found to that question were like this, with the developer being told to get busy writing a kext.
I'm not exactly sure how to accomplish what you're asking, but I may be able to lend some insight as to how you might begin to get it done. So here goes:
A GPS device shows up to most systems as nothing more than a serial device -- a.k.a. a COM port if you're dealing with Windows, /dev/ttySx if you're in *nix. By definition, a serial port's specific duty is to stream data across a bus, one block at a time. So, it would then follow logically that if you want to emulate the presence of a GPS device, you should gather the data you're consuming and put it into a stream that somehow acts like an active serial port.
There are, however, some complications you might want to consider:
Most GPS devices don't just send out location data; there's also information on satellite locations, fix quality, bearing, and so on. Then again, nobody's made any rules saying you have to make all that data available. There's probably more to this, but I'll admit that I need to do more research in this area myself.
I'm not sure how fast you can receive data when dealing with Google Latitude, etc., but any delays in receiving would definitely result in visible pauses in your "serial port"'s data stream. Again, this may not be as big a complication as it seems, because GPS devices are known to "burst" data across the bus anyway, but I'd definitely keep an eye on that. You want to make sure there's always a surplus of data coming across, not a shortage.
Along the way you'll also have to transform the coordinates you receive into valid GPS sentences, as well. You can find specifications for those, but I would definitely make friends with the NMEA standard -- even though it is a flawed standard, it's the one everyone seems to agree on anyway.
Hope this helped you, at least a little bit. Are there anymore details specific to your problem that you think could be useful in answering this question?
Take a look to Franson GPS Gate which allows you to connect to Google Earth among other things (like simulating GPS and so on). Is windows only though but I think you could get some useful ideas from it.
I haven't looked into it very much, but have you considered using Skyhook's SDK? It might provide you with some of what you are looking for. It's available for every major desktop and mobile OS.

Custom robotics for building an auto CD-loading arm

Where would you recommend that I find a company to develop or buy a CD/DVD loading arm similar to: http://www.dextimus.com/
Preferably programmable via USB but if I only can get one with a serial interface that would be fine. Drivers dont matter - I can interface directly with the unit as my situation is very unique.
If you have some experience with electronics, you can give it a shot and build it yourself, like this or this.
I should add that the schematics and the source code are included, and in more details in the first project.
I suppose I might just shorten this by giving a list of resources first:
http://www.embedinc.com/ I trust this company to do good work. Expensive (actually, they are reasonably priced in the design community, but would be considered expensive by most hobbyists and individuals). Not great at people skills, but very very very good at what they do.
You should check out the various microcontroller communities and forums for hobbyists and professionals that can do this. Search for microchip, atmel, msp430, arm, powerpc, etc.
Sparkfun is a supplier to the electronics community - they have great forums where you can post your request, and you'll find people who might do it for fun with only the cost of materials. Might take longer, might not be as 'professional' or well packaged and delivered, but it might be your best low cost option.
There are many electronic design companies that could do this (for instance, I can do this sort of thing).
But there are many questions you haven't answered (and may not have researched) that could prevent success:
Is this patented?
What CD loading/unloading methods are not patented, are out of patent, or otherwise available?
What is your design goal - a one off just for you, or a device that can be built in the hundreds for industrial use, or a device meant for general office workers/consumers that is built in the millions?
Do you realize that this design qould surely cost mroe than simply buying one, if one is all you need?
As an example, assuming you don't need the nice enclosure and don't mind a 'prototype' look, just the mechanicals, electronics, and firmware design (no software on the PC) would likely be 100-250 billable hours for a design firm. At a cheap $90/hr, that's $9k to nearly $25k for one prototype. Add PC software and the nice enclosure, etc and you'll double that.
If you can find a local 'Make' group (techshop, GoTech, or similar) then you might be able to find a hobbyist that is willing to play with this idea for the cost of materials.
But if you define what your goal is, and give us an idea of your resources you may find a better answer.
-Adam
You can create a very nice simple solution using radio control servos. They come in many sizes, but even the small ones have enough torque to move a big arm to move a cd.
The real bonus with servos is that they normally have 180 degrees of rotation and internally have a variable resistor (rheostat) for positioning feedback. Positioning accuracy is normally within 1 degree of rotation which should be fine for a cd loader.
For picking up the CDs, nothing will beat a vacuum. I recommend a small battery powered vacuum cleaner. Funnel the suction into a 1/4 inch pipe. At the other end of the pipe a one inch diameter cup should provide more than enough lift from the small amount of suction.
As for the pile of blank CDs to be burnt, I would advise in moving the pile up rather than an arm down to it. probably having the top blank cd about 1/4 inch higher than the cd tray - By doing this, the arm only needs to rotate in one axis and the vacuum should be enough to suck the cd back out of the tray.
Now, for the electronics. For the servo control I suggest an rs232 serial servo controller. I've used the one from http://www.basicx.com/Products/servo/servo8t.htm as it also gives back torque information from the current draw.
For the low sample rate digital i/o, i suggest (for windows) inpout32.dll which is a dll to give you direct access to the bits of a parallel port. This will allow you to turn on the vacuum at the correct time and possibly sense when cd's have run out. Note that a parallel port can sink more current than it sources so for outputs you should connect to the 5v power line and set the output pin to 0 to turn on the output and 1 to turn it off.
The other nice option, which is very, very simple to interface and very cheap is to get hold of a picaxe from http://www.rev-ed.co.uk/picaxe/. These use a very simple programming language (a BASIC spin off) allowing you to read serial data in and control the servos and digital I/O on one chip. Last time I used one, the language was a bit simple - if statements had to jumped labels, else didn't exist.
If you do use a microcontroller and servos, it is best to use a dual voltage power supply as servos are noisy and can cause the microcontrollers to reset.
As for switching loads such as the vacuum on, you'll need to use a mosfet or (if money is no object) the simpler option, a solid state relay.
All digital inputs you use on the microcontroller should be pulled either to +V or ground with say a 5k resistor so they never float.
I cannot stress how simple and cheap the picaxes are. They have a built in interpreter so although code space is minimal on the small 8 pin units, they are programmable via a simple serial lead.
Good luck. Once you get into automation control, you'll never be able to stop. I'm in the middle of building a 3 axis CNC router so I can cut parts for other projects (I tell my girlfriend it's so she can cut out xmas decorations!).
You might want to contact Aaron Shephard about his Florian project.
I've found that a really easy board to control stepper motors or sorvos are produced by phidgets - the API is incredibly easy, and available for a vast array of platforms.

Resources