I've developed some algorithms to classify digits from the MNIST dataset. The problem is these algorithms have 2 parameters and I use svm to classify which also have 2 parameters (C and gamma). It takes quite some time to find all the optimal ones. I also noted that when I use a C of 2000 I get an accuracy of 98.15% compared to an accuracy of about 90% with a C of 1, the gamma is also very high. Is it normal to have these parameters so high to get good results?
But my main question is: considering that the MNIST data is very lage, can I use a lot less digits per class (for example 1000 per class) instead of the total 60000 to have an idea about where to find good parameters? How exactly does reducing my training data influence the parameters?
Related
I have a dataset with thousand of sentences belonging to a subject. I would like to know what would be best to create a classifier that will predict a text as "True" or "False" depending on whether they talk about that subject or not.
I've been using solutions with Weka (basic classifiers) and Tensorflow (neural network approaches).
I use string to word vector to preprocess the data.
Since there are no negative samples, I deal with a single class. I've tried one-class classifier (libSVM in Weka) but the number of false positives is so high I cannot use it.
I also tried adding negative samples but when the text to predict does not fall in the negative space, the classifiers I've tried (NB, CNN,...) tend to predict it as a false positive. I guess it's because of the sheer amount of positive samples
I'm open to discard ML as the tool to predict the new incoming data if necessary
Thanks for any help
I have eventually added data for the negative class and build a Multilineal Naive Bayes classifier which is doing the job as expected.
(the size of the data added is around one million samples :) )
My answer is based on the assumption that that adding of at least 100 negative samples for author’s dataset with 1000 positive samples is acceptable for the author of the question, since I have no answer for my question about it to the author yet
Since this case with detecting of specific topic is looks like particular case of topics classification I would recommend using classification approach with the two simple classes 1 class – your topic and another – all other topics for beginning
I succeeded with the same approach for face recognition task – at the beginning I built model with one output neuron with high level of output for face detection and low if no face detected
Nevertheless such approach gave me too low accuracy – less than 80%
But when I tried using 2 output neurons – 1 class for face presence on image and another if no face detected on the image, then it gave me more than 90% accuracy for MLP, even without using of CNN
The key point here is using of SoftMax function for the output layer. It gives significant increase of accuracy. From my experience, it increased accuracy of the MNIST dataset even for MLP from 92% up to 97% for the same model
About dataset. Majority of classification algorithms with a trainer, at least from my experience are more efficient with equal quantity of samples for each class in a training data set. In fact, if I have for 1 class less than 10% of average quantity for other classes it makes model almost useless for the detection of this class. So if you have 1000 samples for your topic, then I suggest creating 1000 samples with as many different topics as possible
Alternatively, if you don’t want to create a such big set of negative samples for your dataset, you can create a smaller set of negative samples for your dataset and use batch training with a size of batch = 2x your negative sample quantity. In order to do so, split your positive samples in n chunks with the size of each chunk ~ negative samples quantity and when train your NN by N batches for each iteration of training process with chunk[i] of positive samples and all your negative samples for each batch. Just be aware, that lower accuracy will be the price for this trade-off
Also, you could consider creation of more generic detector of topics – figure out all possible topics which can present in texts which your model should analyze, for example – 10 topics and create a training dataset with 1000 samples per each topic. It also can give higher accuracy
One more point about the dataset. The best practice is to train your model only with part of a dataset, for example – 80% and use the rest 20% for cross-validation. This cross-validation of unknown previously data for model will give you a good estimation of your model accuracy in real life, not for the training data set and allows to avoid overfitting issues
About building of model. I like doing it by "from simple to complex" approach. So I would suggest starting from simple MLP with SoftMax output and dataset with 1000 positive and 1000 negative samples. After reaching 80%-90% accuracy you can consider using CNN for your model, and also I would suggest increasing training dataset quantity, because deep learning algorithms are more efficient with bigger dataset
For text data you can use Spy EM.
The basic idea is to combine your positive set with a whole bunch of random samples, some of which you hold out. You initially treat all the random documents as the negative class, and train a classifier with your positive samples and these negative samples.
Now some of those random samples will actually be positive, and you can conservatively relabel any documents that are scored higher than the lowest scoring held out true positive samples.
Then you iterate this process until it stablizes.
I have time series data of size 100000*5. 100000 samples and five variables.I have labeled each 100000 samples as either 0 or 1. i.e. binary classification.
I want to train it using LSTM , because of the time series nature of data.I have seen examples of LSTM for time series prediction, Is it suitable to use it in my case.
Not sure about your needs.
LSTM is best suited for sequence models, like time series you said, and your description don't look a time series.
Any way, you may use LSTM for time series, not for prediction, but for classification like this article.
In my experience, for binary classification having only 5 features you could find better methods, will consume more memory thant other methods, and could get worst results.
First of all, you can see it from a different perspective, i.e. instead of having 10,000 labeled samples of 5 variables, you should treat it as 10,000 unlabeled samples of 6 variables, where the 6th variable is the label.
Therefore, you can train your LSTM as a multivariate predictor for your 6th variable, that is the sample label and compare with the ground truth during testing to evaluate its performance.
I have dataset which is built from 940 attributes and 450 instance and I'm trying to find the best classifier to get the best results.
I have used every classifier that WEKA suggest (such as J48, costSensitive, combinatin of several classifiers, etc..)
The best solution I have found is J48 tree with accuracy of 91.7778 %
and the confusion matrix is:
394 27 | a = NON_C
10 19 | b = C
I want to get better reuslts in the confution matrix for TN and TP at least 90% accuracy for each.
Is there something that I can do to improve this (such as long time run classifiers which scans all options? other idea I didn't think about?
Here is the file:
https://googledrive.com/host/0B2HGuYghQl0nWVVtd3BZb2Qtekk/
Please help!!
I'd guess that you got a data set and just tried all possible algorithms...
Usually, it is a good to think about the problem:
to find and work only with relevant features(attributes), otherwise
the task can be noisy. Relevant features = features that have high
correlation with class (NON_C,C).
your dataset is biased, i.e. number of NON_C is much higher than C.
Sometimes it can be helpful to train your algorithm on the same portion of positive and negative (in your case NON_C and C) examples. And cross-validate it on natural (real) portions
size of your training data is small in comparison with the number of
features. Maybe increasing number of instances would help ...
...
There are quite a few things you can do to improve the classification results.
First, it seems that your training data is severly imbalanced. By training with that imbalance you are creating a significant bias in almost any classification algorithm
Second, you have a larger number of features than examples. Consider using L1 and/or L2 regularization to improve the quality of your results.
Third, consider projecting your data into a lower dimension PCA space, say containing 90 % of the variance. This will remove much of the noise in the training data.
Fourth, be sure you are training and testing on different portions of your data. From your description it seems like you are training and evaluating on the same data, which is a big no no.
I am working on a classification problem, which has different sensors. Each sensor collect a sets of numeric values.
I think its a classification problem and want to use weka as a ML tool for this problem. But I am not sure how to use weka to deal with the input values? And which classifier will best fit for this problem( one instance of a feature is a sets of numeric value)?
For example, I have three sensors A ,B, C. Can I define 5 collected data from all sensors,as one instance? Such as, One instance of A is {1,2,3,4,5,6,7}, and one instance of B is{3,434,534,213,55,4,7). C{424,24,24,13,24,5,6}.
Thanks a lot for your time on reviewing my question.
Commonly the first classifier to try is Naive Bayes (you can find it under "Bayes" directory in Weka) because it's fast, parameter less and the classification accuracy is hard to beat whenever the training sample is small.
Random Forest (you can find it under "Tree" directory in Weka) is another pleasant classifier since it process almost any data. Just run it and see whether it gives better results. It can be just necessary to increase the number of trees from the default 10 to some higher value. Since you have 7 attributes 100 trees should be enough.
Then I would try k-NN (you can find it under "Lazy" directory in Weka and it's called "IBk") because it commonly ranks amount the best single classifiers for a wide range of datasets. The only issues with k-nn are that it scales badly for large datasets (> 1GB) and it needs to fine tune k, the number of neighbors. This value is by default set to 1 but with increasing number of training samples it's commonly better to set it up to some higher integer value in range from 2 to 60.
And finally for some datasets where both, Naive Bayes and k-nn performs poorly, it's best to use SVM (under "Functions", it's called "Lib SVM"). However, it can be hassle to set up all the parameters of the SVM to get competitive results. Hence I leave it to the end when I already know what classification accuracies to expect. This classifier may not be the most convenient if you have more than two classes to classify.
I have a binary class dataset (0 / 1) with a large skew towards the "0" class (about 30000 vs 1500). There are 7 features for each instance, no missing values.
When I use the J48 or any other tree classifier, I get almost all of the "1" instances misclassified as "0".
Setting the classifier to "unpruned", setting minimum number of instances per leaf to 1, setting confidence factor to 1, adding a dummy attribute with instance ID number - all of this didn't help.
I just can't create a model that overfits my data!
I've also tried almost all of the other classifiers Weka provides, but got similar results.
Using IB1 gets 100% accuracy (trainset on trainset) so it's not a problem of multiple instances with the same feature values and different classes.
How can I create a completely unpruned tree?
Or otherwise force Weka to overfit my data?
Thanks.
Update: Okay, this is absurd. I've used only about 3100 negative and 1200 positive examples, and this is the tree I got (unpruned!):
J48 unpruned tree
------------------
F <= 0.90747: 1 (201.0/54.0)
F > 0.90747: 0 (4153.0/1062.0)
Needless to say, IB1 still gives 100% precision.
Update 2: Don't know how I missed it - unpruned SimpleCart works and gives 100% accuracy train on train; pruned SimpleCart is not as biased as J48 and has a decent false positive and negative ratio.
Weka contains two meta-classifiers of interest:
weka.classifiers.meta.CostSensitiveClassifier
weka.classifiers.meta.MetaCost
They allows you to make any algorithm cost-sensitive (not restricted to SVM) and to specify a cost matrix (penalty of the various errors); you would give a higher penalty for misclassifying 1 instances as 0 than you would give for erroneously classifying 0 as 1.
The result is that the algorithm would then try to:
minimize expected misclassification cost (rather than the most likely class)
The quick and dirty solution is to resample. Throw away all but 1500 of your positive examples and train on a balanced data set. I am pretty sure there is a resample component in Weka to do this.
The other solution is to use a classifier with a variable cost for each class. I'm pretty sure libSVM allows you to do this and I know Weka can wrap libSVM. However I haven't used Weka in a while so I can't be of much practical help here.