docker-compose.yml vs docker-stack.yml what difference? - docker

I am new docker-user. And in difference manuals I have find usually docker-compose.yml file for description docker job, but on docker site for this goal used docker-stack.yml file. What difference?

docker-compose.yml is for the docker-compose tool which is for multi container docker applications on a single docker engine.
its called with
docker-compose up
docker-stack.yml is for the docker swarm tool. (for orchestration and scheduling).
its called with
docker stack

To add to Gabbax0r reply:
Docker Swarm was a standalone component used to cluster Docker engines as a single one.
As of Docker 1.12 the "Swarm" standalone was integrated inside the Docker engine (read the preamble at this page), and Swarm is (or will be) legacy.
To reply to your original question, it is just different names for different cases, but they both are meant to serve the same purpose.
To reply to your comment question, use docker-compose when you have to orchestrate a multi-container app on a single node; if you have to worry about multi-nodes and load-balancing and all this advanced stuff, you better off go with the Swarm.

The docker-stack.yml has the advantage over docker-compose.yml :
Update separately
When working with services, swarms, and docker-stack.yml files, keep in mind that the tasks (containers) backing a service can be deployed on any node in a swarm.
This may be applied to a different node each time the service is updated.
Deploy remotely
If you are running Docker Swarm on your private host then docker-stack.yml can use to access and deploy your application remotely to the host using an SSH key.
You may even use such a service like Codefresh to do so.

Related

Does docker-compose configuration cover 100% of the docker CLI?

Trying to figure out the difference between docker and docker-compose, it looks like the docker-compose CLI effectively provides a means of running the docker CLI indirectly via configuration (What is the difference between docker and docker-compose).
Is there anything that you can do with the docker CLI that COULDN'T be specified in docker-compose.yml?
The docker CLI offers more options to you (e.g. docker history to inspect an image's history, just to name one) than the docker-compose.yml. But the latter is meant for a very different purpose, namely making the deployment of multi-container applications easier.
So, to my knowledge, if we just look at the aspects of starting and configuring containers, you can do everything with docker-compose that "plain" docker can do, but in a much more comfortable way.

Docker swarm get deployment status

After running docker stack deploy to deploy some services to swarm is there a way to programmatically test if all containers started correctly?
The purpose would be to verify in a staging CI/CD pipeline that the containers are actually running and didn't fail on startup. Restart is disabled via restart_policy.
I was looking at docker stack services, is the replicas column useful for this purpose?
$ docker stack services --format "{{.ID}} {{.Replicas}}" my-stack-name
lxoksqmag0qb 0/1
ovqqnya8ato4 0/1
Yes, there are ways to do it, but it's manual and you'd have to be pretty comfortable with docker cli. Docker does not provide an easy built-in way to verify that docker stack deploy succeeded. There is an open issue about it.
Fortunately for us, community has created a few tools that implement docker's shortcomings in this regard. Some of the most notable ones:
https://github.com/issuu/sure-deploy
https://github.com/sudo-bmitch/docker-stack-wait
https://github.com/ubirak/docker-php
Issuu, authors of sure-deploy, have a very good article describing this issue.
Typically in CI/CD I see everyone using docker or docker-compose. A container runs the same in docker as it does docker swarm with respects to "does this container work by itself as intended".
That being said, if you still wanted to do integration testing in a multi-tier solution with swarm, you could do various things in automation. Note this would all be done on a single node swarm to make testing easier (docker events doesn't pull node events from all nodes, so tracking a single node is much easier for ci/cd):
Have something monitoring docker events, e.g. docker events -f service=<service-name> to ensure containers aren't dying.
always have healthchecks in your containers. They are the #1 way to ensure your app is healthy (at the container level) and you'll see them succeed or fail in docker events. You can put them in Dockerfiles, service create commands, and stack/compose files. Here's some great examples.
You could attach another container to the same network to test your services remotely 1-by-1 using tasks. with reverse DNS. This will avoid the VIP and let you talk to a specific replica(s).
You might get some stuff out of docker inspect <service-id or task-id>
Another solution might be to use docker service scale - it will not return until service is converged to specified amount of replicas or will timeout.
export STACK=devstack # swarm stack name
export SERVICE_APP=yourservice # service name
export SCALE_APP=2 # desired amount of replicas
docker stack deploy $STACK --with-registry-auth
docker service scale ${STACK}_${SERVICE_APP}=${SCALE_APP}
One drawback of that method is that you need to provide service names and their replica counts (but these can be extracted from compose spec file using jq).
Also, in my use case I had to specify timeout by prepending timeout command, i.e. timeout 60 docker service scale, because docker service scale was waiting its own timeout even if some containers failed, which could potentially slow down continuous delivery pipelines
References
Docker CLI: docker service scale
jq - command-line JSON processor
GNU Coreutils: timeout command
you can call this for every service. it returns when converged. (all ok)
docker service update STACK_SERVICENAME

Docker usage in compose/swarm mode

I am quite new to docker and I need some help about distributing my application.
Consider this:
I have a pool of physical machines, each of them running the latest version of docker.
My "Application A" has several containers. To be clear in this definition, an application would be a database running in a container, 4 messaging containers and a master container. All 6 containers need to communicate between each other. The database, the messaging and etc containers would be the "services".
I can also have "Application B", "Application C" and "Application N...", that are slightly different in size and configuration from "Application A". Applications do not communicate between each other and are completely independent.
Requirements:
All applications "A,B,C..N" must use the same pool of physical machines.
Each service of each application must run in a different physical machine, if needed.
You may want to restrict how each service is allocated to each physical machine
I need to create applications "on the fly"
My first thought would be to use a docker-compose to define an application and several dockerfiles to define the services inside it. But if I do that, each application would be running in the same docker engine and therefore, the same physical machine.
I have read that you could deploy a docker compose into a docker swarm. In this case, docker swarm would act as a docker engine. However, I could not find any examples on how to do that and I am not sure of the limitations.
My second thought would be to use swarm mode. I would create a swarm, and run services on it. However, I would lose the the concept of "application". There would be a bunch of services thrown into the swarm and I could not manage how each of them communicate with each other.
So, given this problem:
Is there any assumption or statement I got wrong?
What is the recommended docker tools usage in the scenario?
It is possible to use Docker Compose with Docker Swarm Mode (Docker 1.12), but it is currently not completely compatible with it. Have a look at Docker Stacks and Bundles.
In the next version of Docker (1.13) there will also be the new release of Docker Compose v3, which will be compatible with Docker without Docker Compose. This will make it possible to deploy your Docker Compose file like this:
docker deploy --compose-file docker-compose.yml AppA
This is currently experimental but works quite fine with Docker 1-13-rc5. (Docker Releases)
A more detailed explanation of this can be found in this article.
For your requirements to have them all run on different hosts, this is possible with defining constraints in the docker service create (or in the Docker Compose v3) (See Docker Service Create - Constraints). But why do you need to have them run on different hosts?
It is possible to limit the CPU and memory usage that each service is able to use with --limit-cpu and --limit-memory.
If you want to play with Docker Swarm Mode you can create a swarm with Docker Machine on your local host. (Attention do not use the old Docker Swarm)

Recommended way to run a Docker Compose stack in production?

I have a couple of compose files (docker-compose.yml) describing a simple Django application (five containers, three images).
I want to run this stack in production - to have the whole stack begin on boot, and for containers to restart or be recreated if they crash. There aren't any volumes I care about and the containers won't hold any important state and can be recycled at will.
I haven't found much information on using specifically docker-compose in production in such a way. The documentation is helpful but doesn't mention anything about starting on boot, and I am using Amazon Linux so don't (currently) have access to Docker Machine. I'm used to using supervisord to babysit processes and ensure they start on boot up, but I don't think this is the way to do it with Docker containers, as they end up being ultimately supervised by the Docker daemon?
As a simple start I am thinking to just put restart: always on all my services and make an init script to do docker-compose up -d on boot. Is there a recommended way to manage a docker-compose stack in production in a robust way?
EDIT: I'm looking for a 'simple' way to run the equivalent of docker-compose up for my container stack in a robust way. I know upfront that all the containers declared in the stack can reside on the same machine; in this case I don't have need to orchestrate containers from the same stack across multiple instances, but that would be helpful to know as well.
Compose is a client tool, but when you run docker-compose up -d all the container options are sent to the Engine and stored. If you specify restart as always (or preferably unless-stopped to give you more flexibility) then you don't need run docker-compose up every time your host boots.
When the host starts, provided you have configured the Docker daemon to start on boot, Docker will start all the containers that are flagged to be restarted. So you only need to run docker-compose up -d once and Docker takes care of the rest.
As to orchestrating containers across multiple nodes in a Swarm - the preferred approach will be to use Distributed Application Bundles, but that's currently (as of Docker 1.12) experimental. You'll basically create a bundle from a local Compose file which represents your distributed system, and then deploy that remotely to a Swarm. Docker moves fast, so I would expect that functionality to be available soon.
You can find in their documentation more information about using docker-compose in production. But, as they mention, compose is primarily aimed at development and testing environments.
If you want to use your containers in production, I would suggest you to use a suitable tool to orchestrate containers, as Kubernetes.
If you can organize your Django application as a swarmkit service (docker 1.11+), you can orchestrate the execution of your application with Task.
Swarmkit has a restart policy (see swarmctl flags)
Restart Policies: The orchestration layer monitors tasks and reacts to failures based on the specified policy.
The operator can define restart conditions, delays and limits (maximum number of attempts in a given time window). SwarmKit can decide to restart a task on a different machine. This means that faulty nodes will gradually be drained of their tasks.
Even if your "cluster" has only one node, the orchestration layer will make sure your containers are always up and running.
You say that you use AWS so why don't you use ECS which is built for what you ask. You create an application which is the pack of your 5 containers. You will configure which and how many instances EC2 you want in your cluster.
You just have to convert your docker-compose.yml to the specific Dockerrun.aws.json which is not hard.
AWS will start your containers when you deploy and also restart them in case of crash

Multiple site docker swarm with enforced topology

I am building a proof of concept docker swarm based application stack which is intended to evolve a product which is currently deployed to many physical sites and backed by a distributed CDN. The docker compose system I've set up includes a number of different image types which I need to ensure are deployed to each physical location (three copies of each service A, two copies of each service B, at each site for example, each site being several collocated physical machines belonging to the docker swarm) and then others which are deployed only to a central origin location. I'd like to find a way to deploy this with constraints on where the image types end up on the swarm. Is this possible?
Short answer, yes.
Long answer:
use docker compose for managing your cluster, it will ease management.
after creating your swarm you can make docker-compose use that swarm by:
docker-compose -H <docker-swarm-ip:port> up -d
and if you want a container/service to run specifically on a host.
add the following entry in docker-compose.yml under the service you want to run on that host:
environment:
- "constraint:node==<host>"
This is the way i do it now.
i believe this is also available when you use the run command. Tough i never tried it.

Resources