How is Coq's parser implemented? - parsing

I was entirely amazed by how Coq's parser is implemented. e.g.
https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#lab347
It's so crazy that the parser seems ok to take any lexeme by giving notation command and subsequent parser is able to parse any expression as it is. So what it means is the grammar must be context sensitive. But this is so flexible that it absolutely goes beyond my comprehension.
Any pointers on how this kind of parser is theoretically feasible? How should it work? Any materials or knowledge would work. I just try to learn about this type of parser in general. Thanks.
Please do not ask me to read Coq's source myself. I want to check the idea in general but not a specific implementation.

Indeed, this notation system is very powerful and it was probably one of the reasons of Coq's success. In practice, this is a source of much complication in the source code. I think that #ejgallego should be able to tell you more about it but here is a quick explanation:
At the beginning, Coq's documents were evaluated sentence by sentence (sentences are separated by dots) by coqtop. Some commands can define notations and these modify the parsing rules when they are evaluated. Thus, later sentences are evaluated with a slightly different parser.
Since version 8.5, there is also a mechanism (the STM) to evaluate a document fully (many sentences in parallel) but there is some special mechanism for handling these notation commands (basically you have to wait for these to be evaluated before you can continue parsing and evaluating the rest of the document).
Thus, contrary to a normal programming language, where the compiler will take a document, pass it through the lexer, then the parser (parse the full document in one go), and then have an AST to give to the typer or other later stages, in Coq each command is parsed and evaluated separately. Thus, there is no need to resort to complex contextual grammars...

I'll drop my two cents to complement #Zimmi48's excellent answer.
Coq indeed features an extensible parser, which TTBOMK is mainly the work of Hugo Herbelin, built on the CAMLP4/CAMLP5 extensible parsing system by Daniel de Rauglaudre. Both are the canonical sources for information about the parser, I'll try to summarize what I know but note indeed that my experience with the system is short.
The CAMLPX system basically supports any LL1 grammar. Coq exposes to the user the whole set of grammar rules, allowing the user to redefine them. This is the base mechanism on which extensible grammars are built. Notations are compiled into parsing rules in the Metasyntax module, and unfolded in a latter post-processing phase. And that really is AFAICT.
The system itself hasn't changed much in the whole 8.x series, #Zimmi48's comments are more related to the internal processing of commands after parsing. I recently learned that Coq v7 had an even more powerful system for modifying the parser.
In words of Hugo Herbelin "the art of extensible parsing is a delicate one" and indeed it is, but Coq's achieved a pretty great implementation of it.

Related

Which exactly part of parsing should be done by the lexical analyser?

Does there exist a formal definition of the purpose, or at a clear best practice of usage, of lexical analysis (lexer) during/before parsing?
I know that the purpose of a lexer is to transform a stream of characters to a stream of tokens, but can't it happen that in some (context-free) languages the intended notion of a "token" could nonetheless depend on the context and "tokens" could be hard to identify without complete parsing?
There seems to be nothing obviously wrong with having a lexer that transforms every input character into a token and lets the parser do the rest. But would it be acceptable to have a lexer that differentiates, for example, between a "unary minus" and a usual binary minus, instead of leaving this to the parser?
Are there any precise rules to follow when deciding what shall be done by the lexer and what shall be left to the parser?
Does there exist a formal definition of the purpose [of a lexical analyzer]?
No. Lexical analyzers are part of the world of practical programming, for which formal models are useful but not definitive. A program which purports to do something should do that thing, of course, but "lexically analyze my programming language" is not a sufficiently precise requirements statement.
… or a clear best practice of usage
As above, the lexical analyzer should do what it purports to do. It should also not attempt to do anything else. Code duplication should be avoided. Ideally, the code should be verifiable.
These best practices motivate the use of a mature and well-document scanner framework whose input language doubles as a description of the lexical grammar being analyzed. However, practical considerations based on the idiosyncracies of particular programming languages normally result in deviations from this ideal.
There seems to be nothing obviously wrong with having a lexer that transforms every input character into a token…
In that case, the lexical analyzer would be redundant; the parser could simply use the input stream as is. This is called "scannerless parsing", and it has its advocates. I'm not one of them, so I won't enter into a discussion of pros and cons. If you're interested, you could start with the Wikipedia article and follow its links. If this style fits your problem domain, go for it.
can't it happen that in some (context-free) languages the intended notion of a "token" could nonetheless depend on the context?
Sure. A classic example is found in EcmaScript regular expression "literals", which need to be lexically analyzed with a completely different scanner. EcmaScript 6 also defines string template literals, which require a separate scanning environment. This could motivate scannerless processing, but it can also be implemented with an LR(1) parser with lexical feedback, in which the reduce action of particular marker non-terminals causes a switch to a different scanner.
But would it be acceptable to have a lexer that differentiates, for example, between a "unary minus" and a usual binary minus, instead of leaving this to the parser?
Anything is acceptable if it works, but that particular example strikes me as not particular useful. LR (and even LL) expression parsers do not require any aid from the lexical scanner to show the context of a minus sign. (Naïve operator precedence grammars do require such assistance, but a more carefully thought out op-prec architecture wouldn't. However, the existence of LALR parser generators more or less obviates the need for op-prec parsers.)
Generally speaking, for the lexer to be able to identify syntactic context, it needs to duplicate the analysis being done by the parser, thus violating one of the basic best practices of code development ("don't duplicate functionality"). Nonetheless, it can occasionally be useful, so I wouldn't go so far as to advocate an absolute ban. For example, many parsers for yacc/bison-like production rules compensate for the fact that a naïve grammar is LALR(2) by specially marking ID tokens which are immediately followed by a colon.
Another example, again drawn from EcmaScript, is efficient handling of automatic semicolon insertion (ASI), which can be done using a lookup table whose keys are 2-tuples of consecutive tokens. Similarly, Python's whitespace-aware syntax is conveniently handled by assistance from the lexical scanner, which must be able to understand when indentation is relevant (not inside parentheses or braces, for example).

Good practice to parse data in a custom format

I'm writing a program that takes in input a straight play in a custom format and then performs some analysis on it (like number of lines and words for each character). It's just for fun, and a pretext for learning cool stuff.
The first step in that process is writing a parser for that format. It goes :
####Play
###Act I
##Scene 1
CHARACTER 1. Line 1, he's saying some stuff.
#Comment, stage direction
CHARACTER 2, doing some stuff. Line 2, she's saying some stuff too.
It's quite a simple format. I read extensively about basic parser stuff like CFG, so I am now ready to get some work done.
I have written my grammar in EBNF and started playing with flex/bison but it raises some questions :
Is flex/bison too much for such a simple parser ? Should I just write it myself as described here : Is there an alternative for flex/bison that is usable on 8-bit embedded systems? ?
What is good practice regarding the respective tasks of the tokenizer and the parser itself ? There is never a single solution, and for such a simple language they often overlap. This is especially true for flex/bison, where flex can perform some intense stuff with regex matching. For example, should "#" be a token ? Should "####" be a token too ? Should I create types that carry semantic information so I can directly identify for example a character ? Or should I just process it with flex the simplest way then let the grammar defined in bison decide what is what ?
With flex/bison, does it makes sense to perform the analysis while parsing or is it more elegant to parse first, then operate on the file again with some other tool ?
This got me really confused. I am looking for an elegant, perhaps simple solution. Any guideline ?
By the way, about the programing language, I don't care much. For now I am using C because of flex/bison but feel free to advise me on anything more practical as long as it is a widely used language.
It's very difficult to answer those questions without knowing what your parsing expectations are. That is, an example of a few lines of text does not provide a clear understanding of what the intended parse is; what the lexical and syntactic units are; what relationships you would like to extract; and so on.
However, a rough guess might be that you intend to produce a nested parse, where ##{i} indicates the nesting level (inversely), with i≥1, since a single # is not structural. That violates one principle of language design ("don't make the user count things which the computer could count more accurately"), which might suggest a structure more like:
#play {
#act {
#scene {
#location: Elsinore. A platform before the castle.
#direction: FRANCISCO at his post. Enter to him BERNARDO
BERNARDO: Who's there?
FRANCISCO: Nay, answer me: stand, and unfold yourself.
BERNARDO: Long live the king!
FRANCISCO: Bernardo?
or even something XML-like. But that would be a different language :)
The problem with parsing either of these with a classic scanner/parser combination is that the lexical structure is inconsistent; the first token on a line is special, but most of the file consists of unparsed text. That will almost inevitably lead to spreading syntactic information between the scanner and the parser, because the scanner needs to know the syntactic context in order to decide whether or not it is scanning raw text.
You might be able to avoid that issue. For example, you might require that a continuation line start with whitespace, so that every line not otherwise marked with #'s starts with the name of a character. That would be more reliable than recognizing a dialogue line just because it starts with the name of a character and a period, since it is quite possible for a character's name to be used in dialogue, even at the end of a sentence (which consequently might be the first word in a continuation line.)
If you do intend for dialogue lines to be distinguished by the fact that they start with a character name and some punctuation then you will definitely have to give the scanner access to the character list (as a sort of symbol table), which is a well-known but not particularly respected hack.
Consider the above a reflection about your second question ("What are the roles of the scanner and the parser?"), which does not qualify as an answer but hopefully is at least food for thought. As to your other questions, and recognizing that all of this is opinionated:
Is flex/bison too much for such a simple parser ? Should I just write it myself...
The fact that flex and bison are (potentially) more powerful than necessary to parse a particular language is a red herring. C is more powerful than necessary to write a factorial function -- you could easily do it in assembler -- but writing a factorial function is a good exercise in learning C. Similarly, if you want to learn how to write parsers, it's a good idea to start with a simple language; obviously, that's not going to exercise every option in the parser/scanner generators, but it will get you started. The question really is whether the language you're designing is appropriate for this style of parsing, not whether it is too simple.
With flex/bison, does it makes sense to perform the analysis while parsing or is it more elegant to parse first, then operate on the file again with some other tool?
Either can be elegant, or disastrous; elegance has more to do with how you structure your thinking about the problem at hand. Having said that, it is often better to build a semantic structure (commonly referred to as an AST -- abstract syntax tree) during the parse phase and then analyse that structure using other functions.
Rescanning the input file is very unlikely to be either elegant or effective.

Lexical Analysis of a Scripting Language

I am trying to create a simple script for a resource API. I have a resource API mainly creates game resources in a structured manner. What I want is dealing with this API without creating c++ programs each time I want a resource. So we (me and my instructor from uni) decided to create a simple script to create/edit resource files without compiling every time. There are also some other irrelevant factors that I need a command line interface rather than a GUI program.
Anyway, here is script sample:
<path>.<command> -<options>
/Graphics[3].add "blabla.png"
I didn't design this script language, the owner of API did. The part before '.' as you can guess is the path and part after '.' is actual command and some options, flags etc. As a first step, I tried to create grammar of left part because I thought I could use it while searching info about lexical analyzers and parser. The problem is I am inexperienced when it comes to parsing and programming languages and I am not sure if it's correct or not. Here is some more examples and grammar of left side.
dir -> '/' | '/' path
path -> object '/' path | object
object -> number | string '[' number ']'
Notation if this grammar can be a mess, I don't know. There is 5 different possibilities, they are:
String
"String"
Number
String[Number]
"String"[Number]
It has to start with '/' symbol and if it's the only symbol, I will accept it as Root.
Now my problem is how can I lexically analyze this script? Is there a special method? What should my lexical analyzer do and do not(I read some lexical analysers also do syntactic analysis up to a point). Do you think grammar, etc. is technically appropriate? What kind of parsing method I should use(Recursive Descent, LL etc.)? I am trying to make it technically appropriate piece of work. It's not commercial so I have time thus I can learn lexical analysis and parsing better. I don't want to use a parser library.
What should my lexical analyzer do and not do?
It should:
recognize tokens
ignore ignorable whitespace and comments (if there are such things)
optionally, keep track of source location in order to produce meaningful error messages.
It should not attempt to parse the input, although that will be very tempting with such a simple language.
From what I can see, you have the following tokens:
punctuation: /, ., linear-white-space, new-line
numbers
unquoted strings (often called "atoms" or "ids")
quoted strings (possibly the same token type as unquoted strings)
I'm not sure what the syntax for -options is, but that might include more possibilities.
Choosing to return linear-white-space (that is, a sequence consisting only of tabs and spaces) as a token is somewhat questionable; it complicates the grammar considerably, particularly since there are probably places where white-space is ignorable, such as the beginning and end of a line. But I have the intuition that you do not want to allow whitespace inside of a path and that you plan to require it between the command name and its arguments. That is, you want to prohibit:
/left /right[3] .whimper "hello, world"
/left/right[3].whimper"hello, world"
But maybe I'm wrong. Maybe you're happy to accept both. That would be simpler, because if you accept both, then you can just ignore linear-whitespace altogether.
By the way, experience has shown that using new-line to separate commands can be awkward; sooner or later you will need to break a command into two lines in order to avoid having to buy an extra monitor to see the entire line. The convention (used by bash and the C preprocessor, amongst others) of putting a \ as the last character on a line to be continued is possible, but can lead to annoying bugs (like having an invisible space following the \ and thus preventing it from really continuing the line).
From here down is 100% personal opinion, offered for free. So take it for what its worth.
I am trying to make it technically appropriate piece of work. It's not commercial so I have time thus I can learn lexical analysis and parsing better. I don't want to use a parser library.
There is a contradiction here, in my opinion. Or perhaps two contradictions.
A technically appropriate piece of work would use standard tools; at least a lexical generator and probably a parser generator. It would do that because, properly used, the lexical and grammatical descriptions provided to the tools document precisely the actual language, and the tools guarantee that the desired language is what is actually recognized. Writing ad hoc code, even simple lexical recognizers and recursive descent parsers, for all that it can be elegant, is less self-documenting, less maintainable, and provides fewer guarantees of correctness. Consequently, best practice is "use standard tools".
Secondly, I disagree with your instructor (if I understand their proposal correctly, based on your comments) that writing ad hoc lexers and parsers aids in understanding lexical and parsing theory. In fact, it may be counterproductive. Bottom-up parsing, which is incredibly elegant both theoretically and practically, is almost impossible to write by hand and totally impossible to read. Consequently, many programmers prefer to use recursive-descent or Pratt parsers, because they understand the code. However, such parsers are not as powerful as a bottom-up parser (particularly GLR or Earley parsers, which are fully general), and their use leads to unnecessary grammatical compromises.
You don't need to write a regular expression library to understand regular expressions. The libraries abstract away the awkward implementation details (and there are lots of them, and they really are awkward) and let you concentrate on the essence of creating and using regular expressions.
In the same way, you do not need to write a compiler in order to understand how to program in C. After you have a good basis in C, you can improve your understanding (maybe) by understanding how it translates into machine code, but unless you plan a career in compiler writing, knowing the details of obscure optimization algorithms are not going to make you a better programmer. Or, at least, they're not first on your agenda.
Similarly, once you really understand regular expressions, you might find writing a library interesting. Or not -- you might find it incredibly frustrating and give up after a couple of months of hard work. Either way, you will appreciate existing libraries more. But learn to use the existing libraries first.
And the same with parser generators. If you want to learn how to translate an idea for a programming language into something precise and implementable, learn how to use a parser generator. Only after you have mastered the theory of parsing should you even think of focusing on low-level implementations.

Partial parsing with flex/antlr

I encountered a problem while doing my student research project. I'm an electrical engineering student, but my project has somewhat to do with theoretical computer science: I need to parse a lot of pascal sourcecode-files for typedefinitions and constants and visualize all occurrences. The typedefinitions are spread recursively over various files, i.e. there is type a = byte in file x, in file y, there is a record (struct) b, that contains type a and then there is even a type c in file z that is an array of type b.
My idea so far was to learn about compiler construction, since the compiler has to resolve all typedefinitions and break them down to the elemental types.
So, I've read about compiler construction in two books (one of which is even written by the pascal inventor), but I'm lacking so many basics of theoretical computer science that it took me one week alone to work my way halfway through. What I've learned so far is that for achieving my goal, lexer and parser should be sufficient. Since this software is only a really smart part of the whole project, I can't spend so much time with it, so I started experimenting with flex and later with antlr.
My hope was, that parsing for typedefinitions only was such an easy task, that I could manage to do it with only using a scanner and let it do some parser's work: The pascal-files consist of 5 main-parts, each one being optional: A header with comments, a const-section, a type-section, a var-section and (in least cases) a code-section. Each section has a start-identifier but no clear end-identifier. So I started searching for the start of the type- and const-section (TYPE, CONST), discarding everything else. In flex, this is fairly easy, because it allows "start conditions". They can be used as various states like "INITIAL", "TYPE-SECTION", "CONST-SECTION" and "COMMENT" with different rules for each state. I wanted to get back a string from the scanner with following syntax " = ". There was one thing that made this task difficult: Some type contain comments like in this example: AuEingangsBool_t {PCMON} = MAX_AuEingangsFeld;. The scanner can not extract such type-definition with a regular expression.
My next step was to do it properly with scanner AND parser, so I searched for a parsergenerator and found antlr. Since I write the tool in C# anyway, I decided to use its scannergenerator, too, so that I do not have to communicate between different programs. Now I encountered following Problem: AFAIK, antlr does not support "start conditions" as flex do. That means, I have to scan the whole file (okay, comments still get discarded) and get a lot of unneccessary (and wrong) tokens. Because I don't use rules for the whole pascal grammar, the scanner would identify most keywords of the pascal syntax as user-identifiers and the parser would nag about all those series of tokens, that do not fit to type- and constant-defintions
Now, finally my question(s): Can anyone of you tell me, which approach leads anywhere for my project? Is there a possibility to scan only parts of the source-files with antlr? Or do I have to connect flex with antlr for that purpose? Can I tell antlr's parser to ignore every token that is not in the const- or type-section? Are those tools too powerful for my task and should I write own routines instead?
You'd be better off to find a compiler for Pascal, and simply modify to report the information you want. Presumably there is such a compiler for your Pascal, and often the source code for such compilers is available.
Otherwise you essentially need to build a parser. Building lexer, and then hacking around with the resulting lexemes, is essentially building a bad parser by ad hoc methods. ANTLR is a good way to go; you can define the lexemes (including means to pick up and ignore comments) pretty easily, especially for older dialects of Pascal. You'll need good BNF rules for the type information that you want, and translate those rules to the parser generator. What you can do to minimize work, is to cheat on rules for the parts of the language you don't care about. For instance, you could write an accurate subgrammar for assignment statements. Since you don't care about them, you can write a sloppy subgrammar that treats assignment statements as anything that begins with an identifier, is followed by arbitrary other tokens, and ends with semicolon. This kind of a grammar is called an "island grammar"; it is only accurate where it needs to be accurate.
I don't know about the recursive bit. Is there a reason you can't just process each file separately? The answer may depend on what information you want to know about each type declaration, and if you go deep enough, you may need a symbol table as well as an island parser. Parser generators offer you no help for this.
First, there can be type and const blocks within other blocks (procedures, in later Delphi versions also classes).
Moreover, I'm not entirely sure that you can actually simply scan for a const token, and then start parsing. Const is also used for other purposes in most common (Borland) Pascal dialects. Some keywords can be reused in a different context, and if you don't parse the global blockstructure, and only look for const and type in specific places you will erroneously start parsing there.
A base problem of course is the comments. Scanners cut out comments as early as possible, and don't regard them further. You probably have to setup the scanner so that comments are attached to the adjacent tokens as field (associate with token before or save them up till a certain token follows).
As far antlr vs flex, no clue. The only parsergenerator I have some minor experience in parsing Pascal with is Coco/R (a parsergenerator popular by Wirthians), but in general I (and many pascalians) prefer handcoded.

Parsec or happy (with alex) or uu-parsinglib

I am going to write a parser of verilog (or vhdl) language and will do a lot of manipulations (sort of transformations) of the parsed data. I intend to parse really big files (full Verilog designs, as big as 10K lines) and I will ultimately support most of the Verilog. I don't mind typing but I don't want to rewrite any part of the code whenever I add support for some other rule.
In Haskell, which library would you recommend? I know Haskell and have used Happy before (to play). I feel that there are possibilities in using Parsec for transforming the parsed string in the code (which is a great plus). I have no experience with uu-paringlib.
So to parse a full-grammar of verilog/VHDL which one of them is recommended? My main concern is the ease and 'correctness' with which I can manipulate the parsed data at my whim. Speed is not a primary concern.
I personally prefer Parsec with the help of Alex for lexing.
I prefer Parsec over Happy because 1) Parsec is a library, while Happy is a program and you'll write in a different language if you use Happy and then compile with Happy. 2) Parsec gives you context-sensitive parsing abilities thanks to its monadic interface. You can use extra state for context-sensitive parsing, and then inspect and decide depending on that state. Or just look at some parsed value before and decide on next parsers etc. (like a <- parseSomething; if test a then ... do ...) And when you don't need any context-sensitive information, you can simply use applicative style and get an implementation like implemented in YACC or a similar tool.
As a downside of Parsec, you'll never know if your Parsec parser contains a left recursion, and your parser will get stuck in runtime (because Parsec is basically a top-down recursive-descent parser). You have to find left recursions and eliminate them. YACC-style parsers can give you some static guarantees and information (like shift/reduce conflicts, unused terminals etc.) that you can't get with Parsec.
Alex is highly recommended for lexing in both situations (I think you have to use Alex if you decide to go on with Happy). Because even if you use Parsec, it really simplifies your parser implementation, and catches a great deal of bugs too (for example: parsing a keyword as an identifier was a common bug I did while I was using Parsec without Alex. It's just one example).
You can have a look at my Lua parser implemented in Alex+Parsec And here's the code to use Alex-generated tokens in Parsec.
EDIT: Thanks John L for corrections. Apparently you can do context-sensitive parsing with Happy too. Also, Alex for lexing is not required in Happy, though it's recommended.

Resources