Partial parsing with flex/antlr - parsing

I encountered a problem while doing my student research project. I'm an electrical engineering student, but my project has somewhat to do with theoretical computer science: I need to parse a lot of pascal sourcecode-files for typedefinitions and constants and visualize all occurrences. The typedefinitions are spread recursively over various files, i.e. there is type a = byte in file x, in file y, there is a record (struct) b, that contains type a and then there is even a type c in file z that is an array of type b.
My idea so far was to learn about compiler construction, since the compiler has to resolve all typedefinitions and break them down to the elemental types.
So, I've read about compiler construction in two books (one of which is even written by the pascal inventor), but I'm lacking so many basics of theoretical computer science that it took me one week alone to work my way halfway through. What I've learned so far is that for achieving my goal, lexer and parser should be sufficient. Since this software is only a really smart part of the whole project, I can't spend so much time with it, so I started experimenting with flex and later with antlr.
My hope was, that parsing for typedefinitions only was such an easy task, that I could manage to do it with only using a scanner and let it do some parser's work: The pascal-files consist of 5 main-parts, each one being optional: A header with comments, a const-section, a type-section, a var-section and (in least cases) a code-section. Each section has a start-identifier but no clear end-identifier. So I started searching for the start of the type- and const-section (TYPE, CONST), discarding everything else. In flex, this is fairly easy, because it allows "start conditions". They can be used as various states like "INITIAL", "TYPE-SECTION", "CONST-SECTION" and "COMMENT" with different rules for each state. I wanted to get back a string from the scanner with following syntax " = ". There was one thing that made this task difficult: Some type contain comments like in this example: AuEingangsBool_t {PCMON} = MAX_AuEingangsFeld;. The scanner can not extract such type-definition with a regular expression.
My next step was to do it properly with scanner AND parser, so I searched for a parsergenerator and found antlr. Since I write the tool in C# anyway, I decided to use its scannergenerator, too, so that I do not have to communicate between different programs. Now I encountered following Problem: AFAIK, antlr does not support "start conditions" as flex do. That means, I have to scan the whole file (okay, comments still get discarded) and get a lot of unneccessary (and wrong) tokens. Because I don't use rules for the whole pascal grammar, the scanner would identify most keywords of the pascal syntax as user-identifiers and the parser would nag about all those series of tokens, that do not fit to type- and constant-defintions
Now, finally my question(s): Can anyone of you tell me, which approach leads anywhere for my project? Is there a possibility to scan only parts of the source-files with antlr? Or do I have to connect flex with antlr for that purpose? Can I tell antlr's parser to ignore every token that is not in the const- or type-section? Are those tools too powerful for my task and should I write own routines instead?

You'd be better off to find a compiler for Pascal, and simply modify to report the information you want. Presumably there is such a compiler for your Pascal, and often the source code for such compilers is available.
Otherwise you essentially need to build a parser. Building lexer, and then hacking around with the resulting lexemes, is essentially building a bad parser by ad hoc methods. ANTLR is a good way to go; you can define the lexemes (including means to pick up and ignore comments) pretty easily, especially for older dialects of Pascal. You'll need good BNF rules for the type information that you want, and translate those rules to the parser generator. What you can do to minimize work, is to cheat on rules for the parts of the language you don't care about. For instance, you could write an accurate subgrammar for assignment statements. Since you don't care about them, you can write a sloppy subgrammar that treats assignment statements as anything that begins with an identifier, is followed by arbitrary other tokens, and ends with semicolon. This kind of a grammar is called an "island grammar"; it is only accurate where it needs to be accurate.
I don't know about the recursive bit. Is there a reason you can't just process each file separately? The answer may depend on what information you want to know about each type declaration, and if you go deep enough, you may need a symbol table as well as an island parser. Parser generators offer you no help for this.

First, there can be type and const blocks within other blocks (procedures, in later Delphi versions also classes).
Moreover, I'm not entirely sure that you can actually simply scan for a const token, and then start parsing. Const is also used for other purposes in most common (Borland) Pascal dialects. Some keywords can be reused in a different context, and if you don't parse the global blockstructure, and only look for const and type in specific places you will erroneously start parsing there.
A base problem of course is the comments. Scanners cut out comments as early as possible, and don't regard them further. You probably have to setup the scanner so that comments are attached to the adjacent tokens as field (associate with token before or save them up till a certain token follows).
As far antlr vs flex, no clue. The only parsergenerator I have some minor experience in parsing Pascal with is Coco/R (a parsergenerator popular by Wirthians), but in general I (and many pascalians) prefer handcoded.

Related

Why would I use a lexer and not directly parse code?

I am trying to create a simple programming language from scratch (interpreter) but I wonder why I should use a lexer.
For me, it looks like it would be easier to create a parser that directly parses the code. what am I overlooking?
I think you'll agree that most languages (likely including the one you are implementing) have conceptual tokens:
operators, e.g * (usually multiply), '(', ')', ;
keywords, e.g., "IF", "GOTO"
identifiers, e.g. FOO, count, ...
numbers, e.g. 0, -527.23E-41
comments, e.g., /* this text is ignored in your file */
whitespace, e.g., sequences of blanks, tabs and newlines, that are ignored
As a practical matter, it takes a specific chunk of code to scan for/collect the characters that make each individual token. You'll need such a code chunk for each type of token your language has.
If you write a parser without a lexer, at each point where your parser is trying to decide what comes next, you'll have to have ALL the code that recognize the tokens that might occur at that point in the parse. At the next parser point, you'll need all the code to recognize the tokens that are possible there. This gives you an immense amount of code duplication; how many times do you want the code for blanks to occur in your parser?
If you think that's not a good way, the obvious cure to is remove all the duplication: place the code for each token in a subroutine for that token, and at each parser place, call the subroutines for the tokens. At this point, in some sense, you already have a lexer: an isolated collection of code to recognize tokens. You can code perfectly fine recursive descent parsers this way.
The next thing you'll discover is that you call the token subroutines for many of the tokens at each parser point. Even that seems like a lot of work and duplication. So, replace all the calls with a single "GetNextToken" call, that itself invokes the token recognizing code for all tokens, and returns a enum that identifies the specific token encountered. Now your parser starts to look reasonable: at each parser point, it makes one call on GetNextToken, and then branches on enum returned. This is basically the interface that people have standardized on as a "lexer".
One thing you will discover is the token-lexers sometimes have trouble with overlaps; keywords and identifiers usually have this trouble. It is actually easier to merge all the token recognizers into a single finite state machine, which can then distinguish the tokens more easily. This also turns out to be spectacularly fast when processing the programming language source text. Your toy language may never parse more than 100 lines, but real compilers process millions of lines of code a day, and most of that time is spent doing token recognition ("lexing") esp. white space suppression.
You can code this state machine by hand. This isn't hard, but it is rather tedious. Or, you can use a tool like FLEX to do it for you, that's just a matter of convenience. As the number of different kinds of tokens in your language grows, the FLEX solution gets more and more attractive.
TLDR: Your parser is easier to write, and less bulky, if you use a lexer. In addition, if you compile the individual lexemes into a state machine (by hand or using a "lexer generator"), it will run faster and that's important.
Well, for intelligently simplified programing language you can get away without either lexer or parser :-) Not kidding. Look up Forth. You can start with tags here on SO (gforth is GNU's) and then go to the Standard's site which has pointers to a few interpreters, sites and its Glossary.
Then you can check out Win32Forth and that should keep you busy for quite a while :-)
Interpreter also compiles (when you invoke words that switch system to compilation context). All without a distinct parser. Lookahead is actually lookbehind :-) - not kidding. It rarely absorbs one following word (== lookahead is max 1). The "words" (aka tokens) are at the same time keywords and variable names and they all live in a Dictionary. There's a whole online book at that site (plus pdf).
Control structures are also just words (they compile a few addresses and jumps on the fly).
You can find old Journals there as well, covering a wide spectrum from machine code generation to object oriented extensions. Yes still without parser - believe it or not.
There used to be more sophisticated (commercial) Forth systems which were reducing words to machine call instructions with immediate addressing (makes the engine run 2-4 times faster) but even plain interpreters were always considered to be fast. One is apparently still active - SwiftForth, but don't expect any freebies there.
There's one Forth on GitHub CiForth which is quite spartanic but has builds and releases for Win, Linux and Mac, 32 and 64 so you can just download and run. Claims to have a 16-bit build as well :-) For embedded systems I suppose.

How is Coq's parser implemented?

I was entirely amazed by how Coq's parser is implemented. e.g.
https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#lab347
It's so crazy that the parser seems ok to take any lexeme by giving notation command and subsequent parser is able to parse any expression as it is. So what it means is the grammar must be context sensitive. But this is so flexible that it absolutely goes beyond my comprehension.
Any pointers on how this kind of parser is theoretically feasible? How should it work? Any materials or knowledge would work. I just try to learn about this type of parser in general. Thanks.
Please do not ask me to read Coq's source myself. I want to check the idea in general but not a specific implementation.
Indeed, this notation system is very powerful and it was probably one of the reasons of Coq's success. In practice, this is a source of much complication in the source code. I think that #ejgallego should be able to tell you more about it but here is a quick explanation:
At the beginning, Coq's documents were evaluated sentence by sentence (sentences are separated by dots) by coqtop. Some commands can define notations and these modify the parsing rules when they are evaluated. Thus, later sentences are evaluated with a slightly different parser.
Since version 8.5, there is also a mechanism (the STM) to evaluate a document fully (many sentences in parallel) but there is some special mechanism for handling these notation commands (basically you have to wait for these to be evaluated before you can continue parsing and evaluating the rest of the document).
Thus, contrary to a normal programming language, where the compiler will take a document, pass it through the lexer, then the parser (parse the full document in one go), and then have an AST to give to the typer or other later stages, in Coq each command is parsed and evaluated separately. Thus, there is no need to resort to complex contextual grammars...
I'll drop my two cents to complement #Zimmi48's excellent answer.
Coq indeed features an extensible parser, which TTBOMK is mainly the work of Hugo Herbelin, built on the CAMLP4/CAMLP5 extensible parsing system by Daniel de Rauglaudre. Both are the canonical sources for information about the parser, I'll try to summarize what I know but note indeed that my experience with the system is short.
The CAMLPX system basically supports any LL1 grammar. Coq exposes to the user the whole set of grammar rules, allowing the user to redefine them. This is the base mechanism on which extensible grammars are built. Notations are compiled into parsing rules in the Metasyntax module, and unfolded in a latter post-processing phase. And that really is AFAICT.
The system itself hasn't changed much in the whole 8.x series, #Zimmi48's comments are more related to the internal processing of commands after parsing. I recently learned that Coq v7 had an even more powerful system for modifying the parser.
In words of Hugo Herbelin "the art of extensible parsing is a delicate one" and indeed it is, but Coq's achieved a pretty great implementation of it.

Good practice to parse data in a custom format

I'm writing a program that takes in input a straight play in a custom format and then performs some analysis on it (like number of lines and words for each character). It's just for fun, and a pretext for learning cool stuff.
The first step in that process is writing a parser for that format. It goes :
####Play
###Act I
##Scene 1
CHARACTER 1. Line 1, he's saying some stuff.
#Comment, stage direction
CHARACTER 2, doing some stuff. Line 2, she's saying some stuff too.
It's quite a simple format. I read extensively about basic parser stuff like CFG, so I am now ready to get some work done.
I have written my grammar in EBNF and started playing with flex/bison but it raises some questions :
Is flex/bison too much for such a simple parser ? Should I just write it myself as described here : Is there an alternative for flex/bison that is usable on 8-bit embedded systems? ?
What is good practice regarding the respective tasks of the tokenizer and the parser itself ? There is never a single solution, and for such a simple language they often overlap. This is especially true for flex/bison, where flex can perform some intense stuff with regex matching. For example, should "#" be a token ? Should "####" be a token too ? Should I create types that carry semantic information so I can directly identify for example a character ? Or should I just process it with flex the simplest way then let the grammar defined in bison decide what is what ?
With flex/bison, does it makes sense to perform the analysis while parsing or is it more elegant to parse first, then operate on the file again with some other tool ?
This got me really confused. I am looking for an elegant, perhaps simple solution. Any guideline ?
By the way, about the programing language, I don't care much. For now I am using C because of flex/bison but feel free to advise me on anything more practical as long as it is a widely used language.
It's very difficult to answer those questions without knowing what your parsing expectations are. That is, an example of a few lines of text does not provide a clear understanding of what the intended parse is; what the lexical and syntactic units are; what relationships you would like to extract; and so on.
However, a rough guess might be that you intend to produce a nested parse, where ##{i} indicates the nesting level (inversely), with i≥1, since a single # is not structural. That violates one principle of language design ("don't make the user count things which the computer could count more accurately"), which might suggest a structure more like:
#play {
#act {
#scene {
#location: Elsinore. A platform before the castle.
#direction: FRANCISCO at his post. Enter to him BERNARDO
BERNARDO: Who's there?
FRANCISCO: Nay, answer me: stand, and unfold yourself.
BERNARDO: Long live the king!
FRANCISCO: Bernardo?
or even something XML-like. But that would be a different language :)
The problem with parsing either of these with a classic scanner/parser combination is that the lexical structure is inconsistent; the first token on a line is special, but most of the file consists of unparsed text. That will almost inevitably lead to spreading syntactic information between the scanner and the parser, because the scanner needs to know the syntactic context in order to decide whether or not it is scanning raw text.
You might be able to avoid that issue. For example, you might require that a continuation line start with whitespace, so that every line not otherwise marked with #'s starts with the name of a character. That would be more reliable than recognizing a dialogue line just because it starts with the name of a character and a period, since it is quite possible for a character's name to be used in dialogue, even at the end of a sentence (which consequently might be the first word in a continuation line.)
If you do intend for dialogue lines to be distinguished by the fact that they start with a character name and some punctuation then you will definitely have to give the scanner access to the character list (as a sort of symbol table), which is a well-known but not particularly respected hack.
Consider the above a reflection about your second question ("What are the roles of the scanner and the parser?"), which does not qualify as an answer but hopefully is at least food for thought. As to your other questions, and recognizing that all of this is opinionated:
Is flex/bison too much for such a simple parser ? Should I just write it myself...
The fact that flex and bison are (potentially) more powerful than necessary to parse a particular language is a red herring. C is more powerful than necessary to write a factorial function -- you could easily do it in assembler -- but writing a factorial function is a good exercise in learning C. Similarly, if you want to learn how to write parsers, it's a good idea to start with a simple language; obviously, that's not going to exercise every option in the parser/scanner generators, but it will get you started. The question really is whether the language you're designing is appropriate for this style of parsing, not whether it is too simple.
With flex/bison, does it makes sense to perform the analysis while parsing or is it more elegant to parse first, then operate on the file again with some other tool?
Either can be elegant, or disastrous; elegance has more to do with how you structure your thinking about the problem at hand. Having said that, it is often better to build a semantic structure (commonly referred to as an AST -- abstract syntax tree) during the parse phase and then analyse that structure using other functions.
Rescanning the input file is very unlikely to be either elegant or effective.

Lexical Analysis of a Scripting Language

I am trying to create a simple script for a resource API. I have a resource API mainly creates game resources in a structured manner. What I want is dealing with this API without creating c++ programs each time I want a resource. So we (me and my instructor from uni) decided to create a simple script to create/edit resource files without compiling every time. There are also some other irrelevant factors that I need a command line interface rather than a GUI program.
Anyway, here is script sample:
<path>.<command> -<options>
/Graphics[3].add "blabla.png"
I didn't design this script language, the owner of API did. The part before '.' as you can guess is the path and part after '.' is actual command and some options, flags etc. As a first step, I tried to create grammar of left part because I thought I could use it while searching info about lexical analyzers and parser. The problem is I am inexperienced when it comes to parsing and programming languages and I am not sure if it's correct or not. Here is some more examples and grammar of left side.
dir -> '/' | '/' path
path -> object '/' path | object
object -> number | string '[' number ']'
Notation if this grammar can be a mess, I don't know. There is 5 different possibilities, they are:
String
"String"
Number
String[Number]
"String"[Number]
It has to start with '/' symbol and if it's the only symbol, I will accept it as Root.
Now my problem is how can I lexically analyze this script? Is there a special method? What should my lexical analyzer do and do not(I read some lexical analysers also do syntactic analysis up to a point). Do you think grammar, etc. is technically appropriate? What kind of parsing method I should use(Recursive Descent, LL etc.)? I am trying to make it technically appropriate piece of work. It's not commercial so I have time thus I can learn lexical analysis and parsing better. I don't want to use a parser library.
What should my lexical analyzer do and not do?
It should:
recognize tokens
ignore ignorable whitespace and comments (if there are such things)
optionally, keep track of source location in order to produce meaningful error messages.
It should not attempt to parse the input, although that will be very tempting with such a simple language.
From what I can see, you have the following tokens:
punctuation: /, ., linear-white-space, new-line
numbers
unquoted strings (often called "atoms" or "ids")
quoted strings (possibly the same token type as unquoted strings)
I'm not sure what the syntax for -options is, but that might include more possibilities.
Choosing to return linear-white-space (that is, a sequence consisting only of tabs and spaces) as a token is somewhat questionable; it complicates the grammar considerably, particularly since there are probably places where white-space is ignorable, such as the beginning and end of a line. But I have the intuition that you do not want to allow whitespace inside of a path and that you plan to require it between the command name and its arguments. That is, you want to prohibit:
/left /right[3] .whimper "hello, world"
/left/right[3].whimper"hello, world"
But maybe I'm wrong. Maybe you're happy to accept both. That would be simpler, because if you accept both, then you can just ignore linear-whitespace altogether.
By the way, experience has shown that using new-line to separate commands can be awkward; sooner or later you will need to break a command into two lines in order to avoid having to buy an extra monitor to see the entire line. The convention (used by bash and the C preprocessor, amongst others) of putting a \ as the last character on a line to be continued is possible, but can lead to annoying bugs (like having an invisible space following the \ and thus preventing it from really continuing the line).
From here down is 100% personal opinion, offered for free. So take it for what its worth.
I am trying to make it technically appropriate piece of work. It's not commercial so I have time thus I can learn lexical analysis and parsing better. I don't want to use a parser library.
There is a contradiction here, in my opinion. Or perhaps two contradictions.
A technically appropriate piece of work would use standard tools; at least a lexical generator and probably a parser generator. It would do that because, properly used, the lexical and grammatical descriptions provided to the tools document precisely the actual language, and the tools guarantee that the desired language is what is actually recognized. Writing ad hoc code, even simple lexical recognizers and recursive descent parsers, for all that it can be elegant, is less self-documenting, less maintainable, and provides fewer guarantees of correctness. Consequently, best practice is "use standard tools".
Secondly, I disagree with your instructor (if I understand their proposal correctly, based on your comments) that writing ad hoc lexers and parsers aids in understanding lexical and parsing theory. In fact, it may be counterproductive. Bottom-up parsing, which is incredibly elegant both theoretically and practically, is almost impossible to write by hand and totally impossible to read. Consequently, many programmers prefer to use recursive-descent or Pratt parsers, because they understand the code. However, such parsers are not as powerful as a bottom-up parser (particularly GLR or Earley parsers, which are fully general), and their use leads to unnecessary grammatical compromises.
You don't need to write a regular expression library to understand regular expressions. The libraries abstract away the awkward implementation details (and there are lots of them, and they really are awkward) and let you concentrate on the essence of creating and using regular expressions.
In the same way, you do not need to write a compiler in order to understand how to program in C. After you have a good basis in C, you can improve your understanding (maybe) by understanding how it translates into machine code, but unless you plan a career in compiler writing, knowing the details of obscure optimization algorithms are not going to make you a better programmer. Or, at least, they're not first on your agenda.
Similarly, once you really understand regular expressions, you might find writing a library interesting. Or not -- you might find it incredibly frustrating and give up after a couple of months of hard work. Either way, you will appreciate existing libraries more. But learn to use the existing libraries first.
And the same with parser generators. If you want to learn how to translate an idea for a programming language into something precise and implementable, learn how to use a parser generator. Only after you have mastered the theory of parsing should you even think of focusing on low-level implementations.

Parsing Source Code - Unique Identifiers for Different Languages? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 7 years ago.
Improve this question
I'm building an application that receives source code as input and analyzes several aspects of the code. It can accept code from many common languages, e.g. C/C++, C#, Java, Python, PHP, Pascal, SQL, and more (however many languages are unsupported, e.g. Ada, Cobol, Fortran). Once the language is known, my application knows what to do (I have different handlers for different languages).
Currently I'm asking the user to input the programming language the code is written in, and this is error-prone: although users know the programming languages, a small percentage of them (on rare occasions) click the wrong option just due to recklessness, and that breaks the system (i.e. my analysis fails).
It seems to me like there should be a way to figure out (in most cases) what the language is, from the input text itself. Several notes:
I'm receiving pure text and not file names, so I can't use the extension as a hint.
The user is not required to input complete source codes, and can also input code snippets (i.e. the include/import part may not be included).
it's clear to me that any algorithm I choose will not be 100% proof, certainly for very short input codes (e.g. that could be accepted by both Python and Ruby), in which cases I will still need the user's assistance, however I would like to minimize user involvement in the process to minimize mistakes.
Examples:
If the text contains "x->y()", I may know for sure it's C++ (?)
If the text contains "public static void main", I may know for sure it's Java (?)
If the text contains "for x := y to z do begin", I may know for sure it's Pascal (?)
My question:
Are you familiar with any standard library/method for figuring out automatically what the language of an input source code is?
What are the unique code "tokens" with which I could certainly differentiate one language from another?
I'm writing my code in Python but I believe the question to be language agnostic.
Thanks
Vim has a autodetect filetype feature. If you download vim sourcecode you will find a /vim/runtime/filetype.vim file.
For each language it checks the extension of the file and also, for some of them (most common), it has a function that can get the filetype from the source code. You can check that out. The code is pretty easy to understand and there are some very useful comments there.
build a generic tokenizer and then use a Bayesian filter on them. Use the existing "user checks a box" system to train it.
Here is a simple way to do it. Just run the parser on every language. Whatever language gets the farthest without encountering any errors (or has the fewest errors) wins.
This technique has the following advantages:
You already have most of the code necessary to do this.
The analysis can be done in parallel on multi-core machines.
Most languages can be eliminated very quickly.
This technique is very robust. Languages that might appear very similar when using a fuzzy analysis (baysian for example), would likely have many errors when the actual parser is run.
If a program is parsed correctly in two different languages, then there was never any hope of distinguishing them in the first place.
I think the problem is impossible. The best you can do is to come up with some probability that a program is in a particular language, and even then I would guess producing a solid probability is very hard. Problems that come to mind at once:
use of features like the C pre-processor can effectively mask the underlyuing language altogether
looking for keywords is not sufficient as the keywords can be used in other languages as identifiers
looking for actual language constructs requires you to parse the code, but to do that you need to know the language
what do you do about malformed code?
Those seem enough problems to solve to be going on with.
One program I know which even can distinguish several different languages within the same file is ohcount. You might get some ideas there, although I don't really know how they do it.
In general you can look for distinctive patterns:
Operators might be an indicator, such as := for Pascal/Modula/Oberon, => or the whole of LINQ in C#
Keywords would be another one as probably no two languages have the same set of keywords
Casing rules for identifiers, assuming the piece of code was writting conforming to best practices. Probably a very weak rule
Standard library functions or types. Especially for languages that usually rely heavily on them, such as PHP you might just use a long list of standard library functions.
You may create a set of rules, each of which indicates a possible set of languages if it matches. Intersecting the resulting lists will hopefully get you only one language.
The problem with this approach however, is that you need to do tokenizing and compare tokens (otherwise you can't really know what operators are or whether something you found was inside a comment or string). Tokenizing rules are different for each language as well, though; just splitting everything at whitespace and punctuation will probably not yield a very useful sequence of tokens. You can try several different tokenizing rules (each of which would indicate a certain set of languages as well) and have your rules match to a specified tokenization. For example, trying to find a single-quoted string (for trying out Pascal) in a VB snippet with one comment will probably fail, but another tokenizer might have more luck.
But since you want to perform analysis anyway you probably have parsers for the languages you support, so you can just try running the snippet through each parser and take that as indicator which language it would be (as suggested by OregonGhost as well).
Some thoughts:
$x->y() would be valid in PHP, so ensure that there's no $ symbol if you think C++ (though I think you can store function pointers in a C struct, so this could also be C).
public static void main is Java if it is cased properly - write Main and it's C#. This gets complicated if you take case-insensitive languages like many scripting languages or Pascal into account. The [] attribute syntax in C# on the other hand seems to be rather unique.
You can also try to use the keywords of a language - for example, Option Strict or End Sub are typical for VB and the like, while yield is likely C# and initialization/implementation are Object Pascal / Delphi.
If your application is analyzing the source code anyway, you code try to throw your analysis code at it for every language and if it fails really bad, it was the wrong language :)
My approach would be:
Create a list of strings or regexes (with and without case sensitivity), where each element has assigned a list of languages that the element is an indicator for:
class => C++, C#, Java
interface => C#, Java
implements => Java
[attribute] => C#
procedure => Pascal, Modula
create table / insert / ... => SQL
etc. Then parse the file line-by-line, match each element of the list, and count the hits.
The language with the most hits wins ;)
How about word frequency analysis (with a twist)? Parse the source code and categorise it much like a spam filter does. This way when a code snippet is entered into your app which cannot be 100% identified you can have it show the closest matches which the user can pick from - this can then be fed into your database.
Here's an idea for you. For each of your N languages, find some files in the language, something like 10-20 per language would be enough, each one not too short. Concatenate all files in one language together. Call this lang1.txt. GZip it to lang1.txt.gz. You will have a set of N langX.txt and langX.txt.gz files.
Now, take the file in question and append to each of he langX.txt files, producing langXapp.txt, and corresponding gzipped langXapp.txt.gz. For each X, find the difference between the size of langXapp.gz and langX.gz. The smallest difference will correspond to the language of your file.
Disclaimer: this will work reasonably well only for longer files. Also, it's not very efficient. But on the plus side you don't need to know anything about the language, it's completely automatic. And it can detect natural languages and tell between French or Chinese as well. Just in case you need it :) But the main reason, I just think it's interesting thing to try :)
The most bulletproof but also most work intensive way is to write a parser for each language and just run them in sequence to see which one would accept the code. This won't work well if code has syntax errors though and you most probably would have to deal with code like that, people do make mistakes. One of the fast ways to implement this is to get common compilers for every language you support and just run them and check how many errors they produce.
Heuristics works up to a certain point and the more languages you will support the less help you would get from them. But for first few versions it's a good start, mostly because it's fast to implement and works good enough in most cases. You could check for specific keywords, function/class names in API that is used often, some language constructions etc. Best way is to check how many of these specific stuff a file have for each possible language, this will help with some syntax errors, user defined functions with names like this() in languages that doesn't have such keywords, stuff written in comments and string literals.
Anyhow you most likely would fail sometimes so some mechanism for user to override language choice is still necessary.
I think you never should rely on one single feature, since the absence in a fragment (e.g. somebody systematically using WHILE instead of for) might confuse you.
Also try to stay away from global identifiers like "IMPORT" or "MODULE" or "UNIT" or INITIALIZATION/FINALIZATION, since they might not always exist, be optional in complete sources, and totally absent in fragments.
Dialects and similar languages (e.g. Modula2 and Pascal) are dangerous too.
I would create simple lexers for a bunch of languages that keep track of key tokens, and then simply calculate a key tokens to "other" identifiers ratio. Give each token a weight, since some might be a key indicator to disambiguate between dialects or versions.
Note that this is also a convenient way to allow users to plugin "known" keywords to increase the detection ratio, by e.g. providing identifiers of runtime library routines or types.
Very interesting question, I don't know if it is possible to be able to distinguish languages by code snippets, but here are some ideas:
One simple way is to watch out for single-quotes: In some languages, it is used as character wrapper, whereas in the others it can contain a whole string
A unary asterisk or a unary ampersand operator is a certain indication that it's either of C/C++/C#.
Pascal is the only language (of the ones given) to use two characters for assignments :=. Pascal has many unique keywords, too (begin, sub, end, ...)
The class initialization with a function could be a nice hint for Java.
Functions that do not belong to a class eliminates java (there is no max(), for example)
Naming of basic types (bool vs boolean)
Which reminds me: C++ can look very differently across projects (#define boolean int) So you can never guarantee, that you found the correct language.
If you run the source code through a hashing algorithm and it looks the same, you're most likely analyzing Perl
Indentation is a good hint for Python
You could use functions provided by the languages themselves - like token_get_all() for PHP - or third-party tools - like pychecker for python - to check the syntax
Summing it up: This project would make an interesting research paper (IMHO) and if you want it to work well, be prepared to put a lot of effort into it.
There is no way of making this foolproof, but I would personally start with operators, since they are in most cases "set in stone" (I can't say this holds true to every language since I know only a limited set). This would narrow it down quite considerably, but not nearly enough. For instance "->" is used in many languages (at least C, C++ and Perl).
I would go for something like this:
Create a list of features for each language, these could be operators, commenting style (since most use some sort of easily detectable character or character combination).
For instance:
Some languages have lines that start with the character "#", these include C, C++ and Perl. Do others than the first two use #include and #define in their vocabulary? If you detect this character at the beginning of line, the language is probably one of those. If the character is in the middle of the line, the language is most likely Perl.
Also, if you find the pattern := this would narrow it down to some likely languages.
Etc.
I would have a two-dimensional table with languages and patterns found and after analysis I would simply count which language had most "hits". If I wanted it to be really clever I would give each feature a weight which would signify how likely or unlikely it is that this feature is included in a snippet of this language. For instance if you can find a snippet that starts with /* and ends with */ it is more than likely that this is either C or C++.
The problem with keywords is someone might use it as a normal variable or even inside comments. They can be used as a decider (e.g. the word "class" is much more likely in C++ than C if everything else is equal), but you can't rely on them.
After the analysis I would offer the most likely language as the choice for the user with the rest ordered which would also be selectable. So the user would accept your guess by simply clicking a button, or he can switch it easily.
In answer to 2: if there's a "#!" and the name of an interpreter at the very beginning, then you definitely know which language it is. (Can't believe this wasn't mentioned by anyone else.)

Resources