If I declare a function
test(A) -> 3.
Erlang generates a warning about variable A not being used. However the definition
isEqual(X,X) -> 1.
Doesn't produce any warning but
isEqual(X,X) -> 1;
isEqual(X,Y) -> 0.
again produces a warning but only for the second line.
The reason why that doesn't generate a warning is because in the second case you are asserting (through pattern matching), by using the same variable name, that the first and second arguments to isEqual/2 have the same value. So you are actually using the value of the argument.
It might help to understand better if we look at the Core Erlang code produced from is_equal/2. You can get .core source files by compiling your .erl file in the following way: erlc +to_core pattern.erl (see here for pattern.erl).
This will produce a pattern.core file that will look something like this (module_info/[0,1] functions removed):
module 'pattern' ['is_equal'/2]
attributes []
'is_equal'/2 = fun (_cor1,_cor0) ->
case <_cor1,_cor0> of
%% Line 5
<X,_cor4> when call 'erlang':'=:=' (_cor4, X) ->
1
%% Line 6
<X,Y> when 'true' ->
0
end
As you can see, each function clause from is_equal/2 in the .erl source code gets translated to a case clause in Core Erlang. X does get used in the first clause since it needs to be compared to the other argument. On the other hand neither X or Y are used in the second clause.
Related
Here is a function:
let newPositions : PositionData list =
positions
|> List.filter (fun x ->
let key = (x.Instrument, x.Side)
match brain.Positions.TryGetValue key with
| false, _ ->
// if we don't know the position, it's new
true
| true, p when x.UpdateTime > p.UpdateTime ->
// it's newer than the version we have, it's new
true
| _ ->
false
)
it compiles at expected.
let's focus on two lines:
let key = (x.Instrument, x.Side)
match brain.Positions.TryGetValue key with
brain.Positions is a Map<Instrument * Side, PositionData> type
if I modify the second line to:
match brain.Positions.TryGetValue (x.Instrument, x.Side) with
then the code will not compile, with error:
[FS0001] This expression was expected to have type
'Instrument * Side'
but here has type
'Instrument'
but:
match brain.Positions.TryGetValue ((x.Instrument, x.Side)) with
will compile...
why is that?
This is due to method call syntax.
TryGetValue is not a function, but a method. A very different thing, and a much worse thing in general. And subject to some special syntactic rules.
This method, you see, actually has two parameters, not one. The first parameter is a key, as you expect. And the second parameter is what's known in C# as out parameter - i.e. kind of a second return value. The way it was originally meant to be called in C# is something like this:
Dictionary<int, string> map = ...
string val;
if (map.TryGetValue(42, out val)) { ... }
The "regular" return value of TryGetValue is a boolean signifying whether the key was even found. And the "extra" return value, denoted here out val, is the value corresponding to the key.
This is, of course, extremely awkward, but it did not stop the early .NET libraries from using this pattern very widely. So F# has special syntactic sugar for this pattern: if you pass just one parameter, then the result becomes a tuple consisting of the "actual" return value and the out parameter. Which is what you're matching against in your code.
But of course, F# cannot prevent you from using the method exactly as designed, so you're free to pass two parameters as well - the first one being the key and the second one being a byref cell (which is F# equivalent of out).
And here is where this clashes with the method call syntax. You see, in .NET all methods are uncurried, meaning their arguments are all effectively tupled. So when you call a method, you're passing a tuple.
And this is what happens in this case: as soon as you add parentheses, the compiler interprets that as an attempt to call a .NET method with tupled arguments:
brain.Positions.TryGetValue (x.Instrument, x.Side)
^ ^
first arg |
second arg
And in this case it expects the first argument to be of type Instrument * Side, but you're clearly passing just an Instrument. Which is exactly what the error message tells you: "expected to have type 'Instrument * Side'
but here has type 'Instrument'".
But when you add a second pair of parens, the meaning changes: now the outer parens are interpreted as "method call syntax", and the inner parens are interpreted as "denoting a tuple". So now the compiler interprets the whole thing as just a single argument, and all works as before.
Incidentally, the following will also work:
brain.Positions.TryGetValue <| (x.Instrument, x.Side)
This works because now it's no longer a "method call" syntax, because the parens do not immediately follow the method name.
But a much better solution is, as always, do not use methods, use functions instead!
In this particular example, instead of .TryGetValue, use Map.tryFind. It's the same thing, but in proper function form. Not a method. A function.
brain.Positions |> Map.tryFind (x.Instrument, x.Side)
Q: But why does this confusing method even exist?
Compatibility. As always with awkward and nonsensical things, the answer is: compatibility.
The standard .NET library has this interface System.Collections.Generic.IDictionary, and it's on that interface that the TryGetValue method is defined. And every dictionary-like type, including Map, is generally expected to implement that interface. So here you go.
In future, please consider the Stack Overflow guidelines provided under How to create a Minimal, Reproducible Example. Well, minimal and reproducible the code in your question is, but it shall also be complete...
…Complete – Provide all parts someone else needs to reproduce your
problem in the question itself
That being said, when given the following definitions, your code will compile:
type Instrument() = class end
type Side() = class end
type PositionData = { Instrument : Instrument; Side : Side; }
with member __.UpdateTime = 0
module brain =
let Positions = dict[(Instrument(), Side()), {Instrument = Instrument(); Side = Side()}]
let positions = []
Now, why is that? Technically, it is because of the mechanism described in the F# 4.1 Language Specification under §14.4 Method Application Resolution, 4. c., 2nd bullet point:
If all formal parameters in the suffix are “out” arguments with byref
type, remove the suffix from UnnamedFormalArgs and call it
ImplicitlyReturnedFormalArgs.
This is supported by the signature of the method call in question:
System.Collections.Generic.IDictionary.TryGetValue(key: Instrument * Side, value: byref<PositionData>)
Here, if the second argument is not provided, the compiler does the implicit conversion to a tuple return type as described in §14.4 5. g.
You are obviously familiar with this behaviour, but maybe not with the fact that if you specify two arguments, the compiler will see the second of them as the explicit byref "out" argument, and complains accordingly with its next error message:
Error 2 This expression was expected to have type
PositionData ref
but here has type
Side
This misunderstanding changes the return type of the method call from bool * PositionData to bool, which consequently elicits a third error:
Error 3 This expression was expected to have type
bool
but here has type
'a * 'b
In short, your self-discovered workaround with double parentheses is indeed the way to tell the compiler: No, I am giving you only one argument (a tuple), so that you can implicitly convert the byref "out" argument to a tuple return type.
Alright, so I'm a happy fsx-script programmer, because I love how I can have the compiler shout at me when I do mistakes before they show up at runtime.
However I've found a case which really bothers me because I was expecting that by doing some refactoring (i.e.: adding an argument to a function) I was going to be warned by the compiler about all the places where I need to put the new argument. But, not only this did not happen, fsharpi ran my script and ignored the function call completely!! :(
How can I expect to refactor my scripts if this happens?
Here is my code:
let Foo (bar: string) =
Console.WriteLine("I received " + bar)
Foo("hey")
It works.
Now, later, I decide to add a second argument to the function (but I forget to add the argument to all the calls to it):
let Foo (bar: string) (baz: bool) =
Console.WriteLine("I received " + bar)
Foo("hey")
The result of this is: instead of the compiler telling me that I'm missing an argument, it is fsharpi running the script and ignoring the call to Foo! Why?
PS: I know the difference between currying and tuples, so I know Foo("hey") becomes a function (instead of a function call), because of partial application. But I want to understand better why the compiler is not expecting a function evaluation here, instead of seeing a function and ignoring it. Can I enable a warningAsError somehow? I would like to avoid resorting to using tuples in order to workaround this problem.
The fsharpi (or fsi if you're on Windows) interpreter makes no distinction between running a script and typing code at the interactive prompt (or, most often, submitting code from your editor via a select-and-hit-Alt-Enter keyboard shortcut).
Therefore, if you got what you're asking for -- fsharpi issuing a warning whenever a script line has a return value that isn't () -- it would ruin the value of fsharpi for the most common use case, which is people using an interactive fsharpi session to test their code, and rapidly iterate through non-working prototypes to get to one that works correctly. This is one of F#'s great strengths, and giving you what you're asking for would eliminate that strength. It is therefore never going to happen.
BUT... that doesn't mean that you're sunk. If you have functions that return unit, and you want fsharpi to give you a compile-time error when you refactor them to take more arguments, you can do it this way. Replace all occurrences of:
Foo("hey")
with:
() = Foo("hey")
As long as the function Foo has only one argument (and returns null), this will evaluate to true; the true value will be happily ignored by fsharpi, and your script will run. However, if you then change Foo to take two arguments, so that Foo("hey") now returns a function, the () = Foo("hey") line will no longer compile, and you'll get an error like:
error FS0001: This expression was expected to have type
unit
but here has type
'a -> unit
So if you want fsharpi to refuse to compile your script when you refactor a function, go through and change your calls to () = myfunc arg1 arg2. For functions that don't return unit, make the value you're testing against a value of that function's return type. For example, given this function:
let f x = x * 2
You could do
0 = f 5
This will be false, of course, but it will compile. But if you refactor f:
let f x y = x * 2 + y
Now the line 0 = f 5 will not compile, but will give you the error message:
error FS0001: This expression was expected to have type
int
but here has type
int -> int
To summarize: you won't ever get the feature you're looking for, because it would harm the language. But with a bit of work, you can do something that fits your needs.
Or in other words, as the famous philosopher Mick Jagger once put it:
You can't always get what you want. But if you try, sometimes you might find you get what you need.
Say I have a function,foo/1, whose spec is -spec foo(atom()) -> #r{}., where #r{} is a record defined as -record(r, {a :: 1..789})., however, I have foo(a) -> 800. in my code, when I run dialyzer against it, it didn't warn me about this, (800 is not a "valid" return value for function foo/1), can I make dialyzer warn me about this?
Edit
Learn You Some Erlang says:
Dialyzer reserves the right to expand this range into a bigger one.
But I couldn't find how to disable this.
As of Erlang 18, the handling of integer ranges is done by erl_types:t_from_range/2. As you can see, there are a lot of generalizations happening to get a "safe" overapproximation of a range.
If you tried to ?USE_UNSAFE_RANGES (see the code) it is likely that your particular error would be caught, but at a terrible cost: native compilation and dialyzing of recursive integer functions would not ever finish!
The reason is that the type analysis for recursive functions uses a simple fixpoint approach, where the initial types accept the base cases and are repeatedly expanded using the recursive cases to include more values. At some point overapproximations must happen if the process is to terminate. Here is a concrete example:
fact(1) -> 1;
fact(N) -> N * fact(N - 1).
Initially fact/1 is assumed to have type fun(none()) -> none(). Using that to analyse the code, the second clause is 'failing' and only the first one is ok. Therefore after the first iteration the new type is fun(1) -> 1. Using the new type the second clause can succeed, expanding the type to fun(1|2) -> 1|2. Then fun(1|2|3) -> 1|2|6 this continues until the ?SET_LIMIT is reached in which case t_from_range stops using the individual values and type becomes fun(1..255) -> pos_integer(). The next iteration expands 1..255 to pos_integer() and then fun(pos_integer()) -> pos_integer() is a fixpoint!
Incorrect answer follows (explains the first comment below):
You should get a warning for this code if you use the -Woverspecs option. This option is not enabled by default, since Dialyzer operates under the assumption that it is 'ok' to over-approximate the return values of a function. In your particular case, however, you actually want any extra values to produce warnings.
I have this code:
-module(info).
-export([map_functions/0]).
-author("me").
map_functions() ->
{Mod,_} = code:all_loaded(),
map_functions(Mod,#{});
map_functions([H|Tail],A) ->
B = H:mod_info(exports),
map_functions(Tail,A#{H => B});
map_functions([],A) -> A.
However whenever I compile it I get a head mismatch on line 10 which is the
map_funtions([H|Tail],A) ->
I'm sure this is a very basic error but I just cannot get my head around why this does not run. It is a correct pattern match syntax [H|Tail] and the three functions with the same name but different arities are separated by commas.
Your function definition should be
map_functions() ->
{Mod,_} = code:all_loaded(),
map_functions(Mod, #{}).
map_functions([], A) -> A;
map_functions([H|Tail], A) ->
B = H:mod_info(exports),
map_functions(Tail, A#{H => B}).
The name map_functions is the same, but the arity is not. In the Erlang world that means these are two entirely different functions: map_functions/0 and map_functions/2.
Also, note that I put the "base case" first in map_functions/2 (and made the first clause's return value stick out -- breaking that to two lines is more common, but whatever). This is for three reasons: clarity, getting in the habit of writing the base case first (so you don't accidentally write infinite loops), and very often it is necessary to do this so you don't accidentally mask your base case by matching every parameter in a higher-precedence clause.
Some extended discussion on this topic is here (addressing Elixir and Erlang): Specify arity using only or except when importing function on Elixir
Function with same name but different arity are different, they are separated by dots.
code:all_loaded returns a list, so the first function should be written:
map_functions() ->
Mods = code:all_loaded(),
map_functions(Mods, #{}).
The resulting list Mods is a list of tuples of the form {ModName,BeamLocation} so the second function should be written:
map_functions([], A) -> A;
map_functions([{ModName,_}|Tail], A) ->
B = ModName:module_info(exports),
map_functions(Tail, A#{ModName => B}).
Note that you should dig into erlang libraries and try to use more idiomatic forms of code, the whole function, using list comprehension, can be written:
map_functions() ->
maps:from_list([{X,X:module_info(exports)} || {X,_} <- code:all_loaded()]).
I've created the snippet below based on this tutorial. The last two lines (feed_squid(FeederRP) and feed_red_panda(FeederSquid)) are obviously violating the defined constraints, yet Dialyzer finds them okay. This is quite disappointing, because this is exactly the type of error I want to catch with a tool performing static analysis.
There is an explanation provided in the tutorial:
Before the functions are called with the wrong kind of feeder, they're
first called with the right kind. As of R15B01, Dialyzer would not
find an error with this code. The observed behaviour is that as soon
as a call to a given function succeeds within the function's body,
Dialyzer will ignore later errors within the same unit of code.
What is the rationale for this behavior? I understand that the philosophy behind success typing is "to never cry wolf", but in the current scenario Dialyzer plainly ignores the intentionally defined function specifications (after it sees that the functions have been called correctly earlier). I understand that the code does not result in a runtime crash. Can I somehow force Dialyzer to always take my function specifications seriously? If not, is there a tool that can do it?
-module(zoo).
-export([main/0]).
-type red_panda() :: bamboo | birds | eggs | berries.
-type squid() :: sperm_whale.
-type food(A) :: fun(() -> A).
-spec feeder(red_panda) -> food(red_panda());
(squid) -> food(squid()).
feeder(red_panda) ->
fun() ->
element(random:uniform(4), {bamboo, birds, eggs, berries})
end;
feeder(squid) ->
fun() -> sperm_whale end.
-spec feed_red_panda(food(red_panda())) -> red_panda().
feed_red_panda(Generator) ->
Food = Generator(),
io:format("feeding ~p to the red panda~n", [Food]),
Food.
-spec feed_squid(food(squid())) -> squid().
feed_squid(Generator) ->
Food = Generator(),
io:format("throwing ~p in the squid's aquarium~n", [Food]),
Food.
main() ->
%% Random seeding
<<A:32, B:32, C:32>> = crypto:rand_bytes(12),
random:seed(A, B, C),
%% The zoo buys a feeder for both the red panda and squid
FeederRP = feeder(red_panda),
FeederSquid = feeder(squid),
%% Time to feed them!
feed_squid(FeederSquid),
feed_red_panda(FeederRP),
%% This should not be right!
feed_squid(FeederRP),
feed_red_panda(FeederSquid).
Minimizing the example quite a bit I have these two versions:
First one that Dialyzer can catch:
-module(zoo).
-export([main/0]).
-type red_panda_food() :: bamboo.
-type squid_food() :: sperm_whale.
-spec feed_squid(fun(() -> squid_food())) -> squid_food().
feed_squid(Generator) -> Generator().
main() ->
%% The zoo buys a feeder for both the red panda and squid
FeederRP = fun() -> bamboo end,
FeederSquid = fun() -> sperm_whale end,
%% CRITICAL POINT %%
%% This should not be right!
feed_squid(FeederRP),
%% Time to feed them!
feed_squid(FeederSquid)
Then the one with no warnings:
[...]
%% CRITICAL POINT %%
%% Time to feed them!
feed_squid(FeederSquid)
%% This should not be right!
feed_squid(FeederRP).
Dialyzer's warnings for the version it can catch are:
zoo.erl:7: The contract zoo:feed_squid(fun(() -> squid_food())) -> squid_food() cannot be right because the inferred return for feed_squid(FeederRP::fun(() -> 'bamboo')) on line 15 is 'bamboo'
zoo.erl:10: Function main/0 has no local return
... and is a case of preferring to trust its own judgement against a user's tighter spec.
For the version it doesn't catch, Dialyzer assumes that the feed_squid/1 argument's type fun() -> bamboo is a supertype of fun() -> none() (a closure that will crash, which, if not called within feed_squid/1, is still a valid argument). After the types have been inferred, Dialyzer cannot know if a passed closure is actually called within a function or not.
Dialyzer still gives a warning if the option -Woverspecs is used:
zoo.erl:7: Type specification zoo:feed_squid(fun(() -> squid_food())) -> squid_food() is a subtype of the success typing: zoo:feed_squid(fun(() -> 'bamboo' | 'sperm_whale')) -> 'bamboo' | 'sperm_whale'
... warning that nothing prevents this function to handle the other feeder or any given feeder! If that code did check for the closure's expected input/output, instead of being generic, then I am pretty sure that Dialyzer would catch the abuse. From my point of view, it is much better if your actual code checks for erroneous input instead of you relying on type specs and Dialyzer (which never promised to find all the errors anyway).
WARNING: DEEP ESOTERIC PART FOLLOWS!
The reason why the error is reported in the first case but not the second has to do with the progress of module-local refinement. Initially the function feed_squid/1 has success typing (fun() -> any()) -> any(). In the first case the function feed_squid/1 will first be refined with just the FeederRP and will definitely return bamboo, immediately falsifying the spec and stopping further analysis of main/0. In the second, the function feed_squid/1 will first be refined with just the FeederSquid and will definitely return sperm_whale, then refined with both FeederSquid and FeederRP and return sperm_whale OR bamboo. When then called with FeederRP the expected return value success-typing-wise is sperm_whale OR bamboo. The spec then promises that it will be sperm_whale and Dialyzer accepts it. On the other hand, the argument should be fun() -> bamboo | sperm_whale success-typing-wise, it is fun() -> bamboo so that leaves it with just fun() -> bamboo. When that is checked against the spec (fun() -> sperm_whale), Dialyzer assumes that the argument could be fun() -> none(). If you never call the passed function within feed_squid/1 (something that Dialyzer's type system doesn't keep as information), and you promise in the spec that you will always return sperm_whale, everything is fine!
What can be 'fixed' is for the type system to be extended to note when a closure that is passed as an argument is actually used in a call and warn in cases where the only way to 'survive' some part of the type inference is to be fun(...) -> none().
(Note, I am speculating a bit here. I have not read the dialyzer code in detail).
A "Normal" full-fledged type checker has the advantage that type checking is decidable. We can ask "Is this program well-typed" and get either a Yes or a No back when the type checker terminates. Not so for the dialyzer. It is essentially in the business of solving the halting problem. The consequence is that there will be programs which are blatantly wrong, but still slips through the grips of the dialyzer.
However, this is not one of those cases :)
The problem is two-fold. A success type says "If this function terminates normally, what is its type?". In the above, our feed_red_panda/1 function terminates for any argument matching fun (() -> A) for an arbitrary type A. We could call feed_red_panda(fun erlang:now/0) and it should also work. Thus our two calls to the function in main/0 does not give rise to a problem. They both terminate.
The second part of the problem is "Did you violate the spec?". Note that often, specs are not used in the dialyzer as a fact. It infers the types itself and uses the inference patterns instead of your spec. Whenever a function is called, it is annotated with the parameters. In our case, it will be annotated with the two generator types: food(red_panda()), food(squid()). Then a function local analysis is made based on these annotations in order to figure out if you violated the spec. Since the correct parameters are present in the annotations, we must assume the function is used correctly in some part of the code. That it is also called with squids could be an artifact of code which are never called due to other circumstances. Since we are function-local we don't know and give the benefit of doubt to the programmer.
If you change the code to only make the wrong call with a squid-generator, then we find the spec-discrepancy. Because we know the only possible call site violates the spec. If you move the wrong call to another function, it is not found either. Because the annotation is still on the function and not on the call site.
One could imagine a future variant of the dialyzer which accounted for the fact that each call-site can be handled individually. Since the dialyzer is changing as well over time, it may be that it will be able to handle this situation in the future. But currently, it is one of the errors that will slip through.
The key is to notice that the dialyzer cannot be used as a "Checker of well-typedness". You can't use it to enforce structure on your programs. You need to do that yourself. If you would like more static checking, it would probably be possible to write a type checker for Erlang and run it on parts of your code base. But you will run into trouble with code upgrades and distribution, which are not easy to handle.