I'm considering a microservice architecture and I'm struggle with authorization and authentication. I found a lot of resources about oauth2 and openid connect that claim they solve the issue but it is not clear enough for me.
Let's consider we have a following architecture:
In my system I want to add a feature only for a certain group of users defined by role. I want to also know the name of the user, their email and id.
After my research I find the following solution to be a good start:
SPA application displays login form.
User fills in the form and sends POST request to authN&authZ server.
The server replies with access token (being a JWT) that contains name, email, id and role of the user. The response contains a refresh token as well.
SPA application stores the token and attaches it to every request it makes.
Microservice 1 and Microservice 2 check if the token is valid. If so, they check if the role is correct. If so, they take user info and process the request.
How far away from the good solution I am? The login flow looks like Implicit flow with form post described here but with implicit consents and I'm not sure if it's fine.
Moving forward, I find passing user data in JWT (such as name, email) to be not a good solution as it exposes sensitive data. I found resources that say it is recommended to expose only a reference to a user in token (such as ID) and replace such token with a classic access_token in reverser-proxy/api gateway when sending a request to a microservice. Considering such solution I think that following scenario is a good start:
SPA application displays login form.
User fills in the form and sends POST request to authN&authZ server.
The server replies with access token and refresh token. API gateway (in middle) replaces access token with ID token and stores claims from access token within its cache.
SPA application stores the token and attaches it to every request it makes.
Handling a request, API Gateway takes ID Token and based on the user ID generates a new access token. The access token is send to microservice 1 or microservice 2 that validate it as previous.
How do you find such solutions? Is this a secure approach? What should I improve proposed flow?
Thanks in advance!
You are on the right tracks:
ZERO TRUST
This is an emerging trend, where each microservice validates a JWT using a library - see this article. JWT validation is fast and designed to scale.
CONFIDENTIAL TOKENS FOR CLIENTS
Internet clients should not be able to read claims that APIs use. The swapping tokens in a gateway concept is correct, but the usual approach is to issue opaque access tokens here, rather than using ID tokens. At Curity we call this the Phantom Token Approach.
SECURE COOKIES IN THE BROWSER
One area to be careful about is using tokens in the browser. These days SameSite=strict HTTP Only cookies are preferred. This requires a more complex flow though. See the SPA Best Practices for some recommendations on security.
SPAs should use the code flow by the way - aim to avoid the implicit flow, since it can leak tokens in the browser history or web server logs.
SUMMARY
All of the above are general security design patterns to aim for, regardless of your Authorization Server, though of course it is common to get there one step at a time.
Don't use your own login form. As Garry Archer wrote, use the auth code flow with PKCE which is the recomended flow for applications running in a browser.
If you don't want to get an ID token, don't ask for the openid scope in the initial auth request. The type of issued access tokens (JWT or opaque) can often be configured on your OAuth2 server. So I see no need to issue new tokens at your gateway. Having more token issuers opens more ways of attacking your system.
Your backend modules can use the userinfo endpoint, which will give them info about the user and validate the token. This way, if the token was invalidated (e.g. user logged out), the request processing will not proceed. If you validate just a JWT signature, you will not know about the token being invalidated.
If you plan to make requests between your backend modules as part of of a user request processing, you can use the original access token received from your SPA as long as your modules are in a safe environment (e.g. one Kubernates).
For the past 10+ days I've read an watched ALL the content I could find on understanding OAuth2 and OpenID Connect, only to find that many people disagree on the implementation, which really confuses me.
To my understanding, all the articles and examples I found assume you want access to eg. google calendar, profile info or emails if you eg. login with google, but I do NOT need to access other than my own API's - I only want to use Google, Facebook etc for logging in, and getting an id which I can link to my user in my own database - nothing more than that.
I'll try illustrate my use case and use that as an example.
A note on the diagram: the Authentication service could probably be built into the API Gateway - not that i matters for this example, since this is not about "where to do it", but "how to do it the best way" possible, for an architecture such as mine, where it's used for my own API's / Microservices, and not accessing Google, Facebook etc. external API's
If you can understand what I'm trying to illustrate with this diagram above, please tell me if I've misunderstood this.
The most basic requirements for this architecture you see here are:
Users can login with Google, Facebook, etc.
The same login will be used for all micro-services
OpenId user will have a linked account in the database
User access is defined in my own db, based on groups, roles and permissions
I do not intend to use external API's after the user is authenticated and logged in. No need for ever accessing a users calendar, email etc. so I really just need the authentication part and nothing else (proof of successful login). All user access is defined in my own database.
So a few fundamental questions comes to mind.
First of all, is OpenID Connect even the right tool for the job for authentication only (I'll have no use for authorization, since I will not need read/write access to google / facebook API's other than getting the ID from authenticating)?
People generally do not agree on whether to use the ID or Access token for accessing your own API's. As far as I understand the ID token is for the client (user-agent) only, and the access token is for eg. accessing google calendar, emails etc.... External API's of the OpenID Provider... but since I'll only be accessing my own API's, do I event need the access token or the ID token - what is the correct way to protect your own API's?
If the ID token is really just for the client, so it can show eg. currently logged in user, without going to the DB, I have 0 use for it, since I'll probably query the user from from the db and store it in redux for my react frontend app.
Dilemma: To store user details, groups, roles and permission inside JWT or not for API authorization?
By only storing the user identifier in the token, it means that I always allow authenticated users that has a valid token, to call endpoints BEFORE authorization and first then determine access based on the db query result and the permissions in my own database.
By storing more data about the user inside the JWT, it means that in some cases, I'd be able to do the authorization / access (group, role, permission) check before hitting the API - only possible with user info, groups, roles and permission stored inside a JWT issued upon login. In some cases it would not be possible due to eg. the CMS content access permissions being on a per-node level. But still it would mean a little better performance.
As you can see on the diagram I'm sending all API requests through the gateway, which will (in itself or with an authentication service) translate the opaque access token into some JWT with an identifier, so I can identify the user in the graph database - and then verify if the user has the required groups, roles and permissions - not from an external API, but from my own database like you see on the diagram.
This seems like a lot of work on every request, even if the services can share the JWT in case multiple services should need to cross call each other.
The advantage of always looking up the user, and his permissions in the db, is naturally that the moment the user access levels change, he is denied/granted access immediately and it will always be in sync. If I store the user details, groups, roles and permission inside a JWT and persist that in the client localstorage, I guess it could pose a security issue right, and it would be pretty hard to update the user info, groups, roles and permissions inside that JWT?
One big advantage of storing user access levels and info inside the JWT is of course that in many cases I'd be able to block the user from calling certain API's, instead of having to determine access after a db lookup.
So the whole token translation thing means increased security at the cost of performance, but is is generally recommended and worth it? Or is it safe enough to store user info and groups, roles, permissions inside the JWT?
If yes, do I store all that information from my own DB in the ID Token, Access token or a 3rd token - what token is sent to the API and determines if the user should be granted access to a given resource based on his permissions in the db? Do I really need an access token if I don't need to interact with the ID providers API? Or do I store and append all my groups, roles, permissions inside the ID token (that doesn't seem clean to me) issued by OpenID connect, and call the API and authorize my own API endpoints using that, even if some say you should never use the ID token to access an API? Or do I create a new JWT to store all the info fetched from my database, which is to be used for deciding if the user can access a given resource / API endpoint?
Please do not just link to general specs or general info, since I've already read it all - I just failed to understand how to apply all that info to my actual use case (the diagram above). Try to please be as concrete as possible.
Made another attempt to try and simply the flow:
The following answer does only apply for a OpenID Connect authentication flow with a 3rd party IDP (like Google). It does not apply for an architecture where you host your own IDP.
(There are some API gateways (e.g Tyk or Kong) which support OpenID Connect out of the box.)
You can use JWTs (ID token) to secure your APIs. However, this has one disadvantage. JWTs cannot be revoked easily.
I would not recommend this. Instead you should implement an OAuth2 authorization server which issues access tokens for your API. (In this case, you have two OAuth2 flows. One for authentication and one for authorization. The ID and access token from the IDP are used only for authentication.)
The following picture shows a setup where the API gateway and authentication/authorization server are two separate services. (As mentioned above, the authentication/authorization can also be done by the API gateway.)
The authentication flow (Authorization Code Grant) calls are marked blue. The authorization flow (Implicit Grant) calls are marked green.
1: Your web app is loaded from the app server.
2a: The user clicks on your login button, your web app builds the authorization URL and opens it. (See: Authorization Request)
2b: Because the user hasn't authenticated and has no valid session with your authorization server, the URL he wanted to access is stored and your authorization server responds with a redirect to its login page.
3: The login page is loaded from your authorization server.
4a: The user clicks on "Login with ...".
4b: Your authorization server builds the IDP authorization URL and responds with a redirect to it. (See: Authentication Request)
5a: The IDP authorization URL is opend.
5b: Because the user hasn't authenticated and has no valid session with the IDP, the URL he wanted to access is stored and the IDP responds with a redirect to its login page.
6: The login page is loaded from the IDP.
7a: The user fills in his credentials and clicks on the login button.
7b: The IDP checks the credentials, creates a new session and responds with a redirect to the stored URL.
8a: The IDP authorization URL is opend again.
(The approval steps are ignored here for simplicity.)
8b: The IDP creates an authorization and responds with a redirect to the callback URL of your authorization server. (See: Authentication Response)
9a: The callback URL is opened.
9b: Your authorization server extracts the authorization code from the callback URL.
10a: Your authorization server calls the IDP's token endpoint, gets an ID and access token and validates the data in the ID token. (See: Token Request)
(10b: Your authorization server calls the IDP's user info endpoint if some needed claims aren't available in the ID token.)
11a/b: Your authorization server queries/creates the user in your service/DB, creates a new session and responds with a redirect to the stored URL.
12a: The authorization URL is opend again.
(The approval steps are ignored here for simplicity.)
12b/+13a/b: Your authorization server creates/gets the authorization (creates access token) and responds with a redirect to the callback URL of your web app. (See: Access Token Response)
14a: The callback URL is opened.
14b: Your web app extracts the access token from the callback URL.
15: Your web app makes an API call.
16/17/18: The API gateway checks the access token, exchanges the access token with an JWT (which contains user infos, ...) and forwards the call.
A setup where the authorization server calls the API gateway is also possible. In this case, after the authorization is done, the authorization server passes the access token and JWT to the API gateway. Here, however, everytime the user infos change the authorization server has to "inform" the API gateway.
This is a very long question. But I believe most can be summarised by answering below,
To my understanding, all the articles and examples I found assume you want access to eg. google calendar, profile info or emails if you eg. login with google,
You do not necessarily use Access token (ID token in some occasions) to access the services offered by token issuer.You can consume tokens by your own APIs. What these Identity Providers (synonym to Authorization server, or IDP in shorthand) is to hold identities of end users. For example, typical internet have a Facebook account. With OAuth and OpenID Connect, the same user get the ability to consume your API or any OAuth/OIDC accepted service. This reduce user profile creation for end users.
In corporate domain, OAuth and OIDC serves the same purpose. Having a single Azure AD account lets you to consume MS Word as well as Azure AD's OIDC will issue tokens which can be used to Authorise against an in-house API or an third party ERP product (used in organization) which support OIDC based authentication. Hope it's clear now
A note on the diagram is that the Authentication service could probably be built into the API Gateway - not sure if that would be better?
If you are planning to implement an API gateway, think twice. If things are small scale and if you think you can maintain it, then go ahead. But consider about API managers which could provide most of your required functionalities. I welcome you to read this article about WSO2 API manger and understand its capabilities (No I'm not working for them).
For example, that API manager has built in authentication handling mechanism for OAuth and OIDC. It can handle API authentication with simple set of configurations. With such solution you get rid of the requirement of implement everything.
What if you can't use an API manager and has to do it yourself
OpenID Connect is for authentication. Your application can validate the id token and authenticate end user. To access APIs through API Gateway, I think you should utilise Access token.
To validate the access token, you can use introspection endpoint of the identity provider. And to get user information, you can use user-info endpoint.
Once access token is validated, API gateway could create a session for a limited time (ideally to be less or equal to access token lifetime). Consequent requests should come with this session to accept by API gateway. Alternatively, you can still use validated access token. Since you validated it at the first call, you may cache for a certain time period thus avoiding round trips to validations.
To validate user details, permission and other grants, well you must wither bind user to a session or else associate user to access token from API gateway at token validation. I'm also not super clear about this as I have no idea on how your DB logic works.
First Appreciate your patience in writing a very valuable question in this forum
we too have same situation and problem
I want to go through ,as images are blocked in our company in detail
Was trying to draw paralles to similar one quoted in the book
Advance API In Practise - Prabath Siriwerdena [ page 269]Federating access to API's Chapter. Definitely worth reading of his works
API GW should invoke Token Exchange OAUTH2.0 Profile to IDP [ provided the IDP should support TOken Exchange profile for OAUTH 2.0
The Absence of API Gateway , will result in quite bespoke development
for Access Control for each API Check
you land up in having this check at each of the api or microservice [ either as library which does work for you as a reusable code]
definitely will become a choking point.]
I have a rails API and a rails client app that communicate with each other via ActiveResource. This works great until I need to pass a unique token with each ActiveResource request to authenticate the user. From what I understand, the ActiveResource token gets set at the class level and cannot be easily changed, which is obviously a problem if I want people to be passing in their unique session token after they are authenticated.
Here is the flow that I am trying to implement:
User submits credentials on Client app.
Client app transmits credentials to API.
API verifies credentials via Devise and returns an auth token.
Client receives auth token and saves in session.
All subsequent requests from Client include the auth token.
API authenticates all requests with the included auth token.
There are many different posts on SO and Github about this. Some say that it simply cannot be done, others say that you can force it, but there are issues with threading.
How can I accomplish what I'm trying to do without losing the huge benefits that ActiveResource provides?
Active Resource has undergone quite an update over the past year or so and is now working well in the modern web.
Active Resource supports the token based authentication provided by Rails through the ActionController::HttpAuthentication::Token class using custom headers.
class Person < ActiveResource::Base
self.headers['Authorization'] = 'Token token="abcd"'
end
You can also set any specific HTTP header using the same way. As mentioned above, headers are thread-safe, so you can set headers dynamically, even in a multi-threaded environment:
ActiveResource::Base.headers['Authorization'] = current_session_api_token
I've used an OAuth JWT strategy with Active Resource quite successfully using the second method in an API controller:
ActiveResource::Base.headers['Authorization'] = "Bearer #{jwt.token}"
I am building an API for my rails app. Through that API I will log users in and allow them to interact with their data.
On top of that users authentication, I will also like to make sure only my iOS app has access to the API, and eventually my own web app.
I want to make sure no one else will be using the API, so on top of the user authentication, I will like to protect my API with a token for each of my apps.
How do you usually solve this problem? Would I have to pass that token over on each call in order to authenticate that the call is coming from a valid client and identify which client it is (web vs iOS).
I will very much appreciate any pointers or if you know of an article explaining how to deal with this.
As you are already using jwt's to authenticate your user, why not just use the functionality of jwt to include additional information in the token, in this instance some form of hashed string that you can verify server side if it is a valid "client id".
On each request you could refresh the string.
Kind of dual authentication in each request. the user and the client.
I am trying to build out a video collaboration platform. I wish to design it in such a way that there is an API and my web app is like a 'third party' app.
The way I see it working is with three main components..
JSON API written in Ruby
Web App written in Ruby/Rails
Front End Application in Coffeescript
I want to be able to make authenticated requests for resources such as 'projects'
As of right now, I imagine the front end application talking to the Rails app in order to get an authenticated request, and then the front end app using that authenticated request to call the API.
I have a few questions about this architecture.
If I plan to open the API up later, is OAuth what I should be using?
If so, what would the request flow look like?
I am only asking these questions because OAuth looks to be the standard and I can only see it in terms of authenticating a third party app to access resources in another app.
I guess I am mostly looking for some guidance, as I can build applications, I am just no security expert. Thank you all for the help.
I can tell you what I'm doing right now in my project:
Rails API (JSON); you can use rails api gem, grape or full rails framework.
Single page web app using AngularJs (it can be anything else you feel comfortable with, like backbone, emberjs, etc.)
How I'm authenticating the user:
The user posts to /login with username and password
The Rails part authenticates the user (by the username and password), creates an access token (persist it in a table, with expiration time, for example, 30 mins) and returns it to the user.
Each request from the client side (angularjs part) is passed with a Token authentication header like so: Authorization: Token token=[the token goes here]
The rails api uses to token to get the associated user
If the token has expired or is invalid, it returns 401 (unauthorized); once the angularjs part intercepts a 401 it redirects the user to the login page.
If the request is authenticated, the expiration time is reset to 'now' so the 30min i'm talking about acts like 30 mins of inactivity
You can do a lot more with the access token - you can do roles, like Admin, User, etc. and limit the user's access to resources.