what are the args that are being passed from clang to llc? - clang

I am working on the llvm project. Recently I tryed to compiler one of my .c files using clang command line into an .s file by using the next command:
clang --target=arch -S -O0 select.c -o select.s
and it crashed in the backend in the function ARCHInstrInfo::storeRegToStackSlot with the backtrace of the stack.
However when I tryed to do it in steps:
clang -O0 -emit-llvm select.c -c -o select.bc
llc -filetype=asm -march=arch ./select.bc -o ./select.s -print-after-all -debug-only isel
it succeeded !! (?)
How can I see how the clang is calling to the backend (llc) ?
I tryed to run the clang with -v flag but it didn't printed how it is calling to the backend...

So the first one that sticks out is that llc defaults to O2 rather than O0 so you might want to look there first.

Related

How to build LLVM (clang,clang++) for Apple M1?

I am trying to build LLVM compilers so that I can enable OpenMP on the Apple M1.
I am using the LLVM development tree, (since I saw some OpenMP runtime go into that for this recently).
I have ended up with this script to invoke cmake:
# Xcode, Ninja
BUILD_SYSTEM=Ninja
BUILD_TAG=Ninja
cmake ../llvm \
-G$BUILD_SYSTEM -B ${BUILD_TAG}_build \
-DCMAKE_OSX_ARCHITECTURES='arm64' \
-DCMAKE_C_COMPILER=`which clang` \
-DCMAKE_CXX_COMPILER=`which clang++` \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=1 \
-DCMAKE_INSTALL_PREFIX=$HOME/software/clang-12.0.0/arm64 \
-DLLVM_ENABLE_WERROR=FALSE \
-DLLVM_TARGETS_TO_BUILD='AArch64' \
-DLLVM_ENABLE_PROJECTS='clang;openmp,polly' \
-DLLVM_DEFAULT_TARGET_TRIPLE='aarch64-apple-darwin20.1.0'
The compilers used here are
$ /usr/bin/clang --version
Apple clang version 12.0.0 (clang-1200.0.32.27)
Target: arm64-apple-darwin20.1.0
Thread model: posix
InstalledDir: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
ninja can then successfully build clang, clang++ and the OpenMp runtime and install them. (As simple, Arm64 images targeting Arms64)
$ file ~/software/clang-12.0.0/arm64/bin/clang
/Users/jcownie/software/clang-12.0.0/arm64/bin/clang: Mach-O 64-bit executable arm64
$ ~/software/clang-12.0.0/arm64/bin/clang --version
clang version 12.0.0 (https://github.com/llvm/llvm-project.git 879c15e890b4d25d28ea904e92497f091f796019)
Target: aarch64-apple-darwin20.1.0
Thread model: posix
InstalledDir: /Users/jcownie/software/clang-12.0.0/arm64/bin
Which all looks sane, except that when I try to compile anything with them they are missing the include path to get system headers.
$ ~/software/clang-12.0.0/arm64/bin/clang hello.c
hello.c:1:10: fatal error: 'stdio.h' file not found
#include <stdio.h>
^~~~~~~~~
1 error generated.
So, after all that,
Does anyone know how to fix that include path problem?
Does anyone know how to configure and build a fat binary for the compilers (and libraries) so that the x86_64 embedded compiler targets x86_64 and the aarch64 binary aarch64? (This is what the Xcode clang and clang++ do...)
My attempt at this ended up with a compiler fat binary where both architectures targeted x86_64 :-(
Thanks
You can set -DDEFAULT_SYSROOT=/path/to/MacOSX11.1.sdk at build time or do export SDKROOT=/path/to/MacOSX11.1.sdk at runtime.
You need to compile with clang -arch arm64 -arch x86_64 to get a fat binary out of clang. You need to do this for Apple clang as well.
UPDATED 8 Feb 2021
Homebrew now supports the M1 based Arm machines, so using that is a better answer than the one below.
The info below is potentially still useful if you want to do this on your own, but using brew is likely to be much simpler.
Pre-brew answer
I haven't found a clean solution, but in case it helps anyone else, I do have a horrible hack.
The full recipe, then is configure with this script, then build and install.
# Xcode, Ninja
BUILD_SYSTEM=Ninja
BUILD_TAG=ninja
INSTALLDIR=$HOME/software/clang-12.0.0/arm64
cmake ../llvm \
-G$BUILD_SYSTEM -B ${BUILD_TAG}_build \
-DCMAKE_OSX_ARCHITECTURES='arm64' \
-DCMAKE_C_COMPILER=`which clang` \
-DCMAKE_CXX_COMPILER=`which clang++` \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_INSTALL_PREFIX=$INSTALLDIR \
-DLLVM_LOCAL_RPATH=$INSTALLDIR/lib \
-DLLVM_ENABLE_WERROR=FALSE \
-DLLVM_TARGETS_TO_BUILD='AArch64' \
-DLLVM_DEFAULT_TARGET_TRIPLE='aarch64-apple-darwin20.1.0' \
-DDEFAULT_SYSROOT="$(xcrun --show-sdk-path)" \
-DLLVM_ENABLE_PROJECTS='clang;openmp;polly;clang-tools-extra;libcxx;libcxxabi' \
# -DLLVM_ENABLE_PROJECTS='clang;openmp;polly'
That gives a compiler that finds the right headers, but won't link successfully if OpenMP is used because it doesn't pass on any useful -L path or add a necessary rpath.
To overcome that I created a small shell script that sits in my ~/bin, at the front of my $PATH, which adds those extra linker flags.
#
# A truly awful hack, but it seems necessary.
# Install this with execute permissions as clang and clang++ in
# a directory early in your path, so that it is executed when clang or
# clang++ is needed.
#
# For brew...
INSTALLDIR=/usr/local/opt/llvm
# For a local build.
INSTALLDIR=${HOME}/software/clang-12.0.0/arm64/
# Find out the name of this file, and then invoke the same file in the
# compiler installation, adding the necessary linker directives
CMD=`echo $0 | sed "s/\/.*\///"`
${INSTALLDIR}/bin/${CMD} -L${INSTALLDIR}/lib -Wl,-rpath,${INSTALLDIR}/lib $*
I am not recommending this particularly; there should clearly be a better way to make it work, but it'll do for now, and lets me get back to using the compiler rather than building it!
I was able to build with -DDEFAULT_SYSROOT="$(xcrun --show-sdk-path)" -DCMAKE_INSTALL_PREFIX=/Users/foo/lokal/ and install into the lokal/bin lokal/lib path. Once that is done you can use LD_LIBRARY_PATH=/Users/foo/lokal/lib and all the libraries should be found without mucking with anything else rpath related.

How to get exploded graph from clang analyzer

I am trying to get exploded graph from one of the debug checkers called
debug.ViewExplodedGraph.
So I run command
clang -cc1 -analyze -analyzer-checker=debug.ViewExplodedGraph someprogram.c
It run successfully, but graph file no where to be found .
Where can we see the generated file?
I guess you should build the clang yourself. Then use the debug mode 'clang', call the command. The system clang is in release mode.
I use the system clang, it outputs nothing. But I use the clang that I build, it output something.
➜ bin ./clang -cc1 -analyze -analyzer-checker=debug.ViewExplodedGraph ~/Desktop/clang_test/test.c
Writing '/var/folders/_6/5wkxc9p92t94vdh0kyq2qyh40000gn/T/ExprEngine-9e6797.dot'... done.
Trying 'open' program... Remember to erase graph file: /var/folders/_6/5wkxc9p92t94vdh0kyq2qyh40000gn/T/ExprEngine-9e6797.dot
Warning: viewing graph requires assertions
➜ bin clang -cc1 -analyze -analyzer-checker=debug.ViewExplodedGraph ~/Desktop/clang_test/test.c
Warning: viewing graph requires assertions
cd to T folder
➜ T dot -Tsvg ExprEngine-9e6797.dot -o ~/Desktop/test.svg
then use chrome open test.svg

What flags does -march=native activate with Clang?

With GCC one is able to print out the specific flags that -march=native triggers. Is it possible to have Clang print similar information?
Instead of using the (non-existent in clang) -help=target flag, you can use echo | clang -E - -march=native -### to print out the compilation command. While this doesn't list the non-triggered flags and it's not pretty, it does list all the enabled flags.

How is -fPIE passed along to llc?

I'm working on an LLVM backend for a new architecture and we need to have position independent executables. I can pass '-fPIE' on the clang command line, but I don't see any indication of this show up in the resulting LLVM IR. For example, if I run:
clang -v -emit-llvm -fPIC -O0 -S global_dat.c -o global_dat_x86_pic.ll
And then take a look at the resulting global_dat_x86_pic.ll file, I see the following near the bottom:
!0 = !{i32 1, !"PIC Level", i32 2}
Ok, makes sense.
However if I run:
clang -v -emit-llvm -fPIE -O0 -S global_dat.c -o global_dat_x86_pie.ll
I see that the two .ll files are identical. Near the bottom of global_cat_x86_pie.ll I see:
!0 = !{i32 1, !"PIC Level", i32 2}
Which is identical to the case where I ran with -fPIE. There's no indication of "PIE Level" in the .ll file. If this .ll file were passed on to llc how would llc know that -fPIE had been set on the clang command line?
I have run in gdb and see that in fact in the second case with -fPIE on the clang commandline there is an Opts.PIELevel (in $LLVM_HOME/tools/clang/lib/Frontend/CompilerInvocation.cpp) that gets set to 2 (in fact, both Opts.PIELevel and Opts.PICLevel are set to 2 in that case whereas in -fPIC is passed to clang only Opts.PICLevel is set to 2)
This depends on your default target triple, which I can't tell from your question. You can see what happens if you cut off the default architecture (or run a native clang on an arch that does support PIE)
For example, bare X86-64 shows this,
$ clang -c hello.c -target x86_64 -fPIE -emit-llvm -###
if you run that command, you'll find "-pie-level" "2" in the output, which is how llc (well, it's internal equivalent) knows about it.
The key here is that you'll have to arrange for your backend to do something with this flag. Certain platforms (like Darwin) just ignore it. If you happen to be experiment on an OSX host, you won't see -pie-level in the bogbrush output.

Enabling the gold linker on Freebsd

I have been trying to enable the gold linker on FreeBSD to use the link time optimizations. I made gold from the binutils under /usr/ports. After building binutils using make -k install clean i got ld under /usr/bin and in the directory /usr/local/bin i got ld, ld.gold and ld.bfd.
Now while trying to use link time optimization for the simple example programs here http://llvm.org/docs/GoldPlugin.html (a.c and b.c under the heading 'Examples of Link Time Optimization') i entered the four commands as follows:
clang -flto a.c -c -o a.o
ar q a.a a.o
clang b.c -c -o b.o
clang -flto a.a b.o -o main
I got the following error:
usr/bin/ld: unrecogonized option '-plugin'
usr/bin/ld: use the --help option for usage information
clang: error: linker command failed with exit code 1 (use -v to see invocation)
Is there the problem with the linker that ld.gold is not being called. Should I replace the ld with ld.gold? Does the linker looks in the right directiry for the .so plugins?
The LLVMgold.so and libLTO.so shared objects are in the directory /usr/local/llvm-devel/lib/.
I cannot find the directory where clang is installed. I am not sure where to make the bfd-plugins directory and add the symlinks to LLVMgold.so and libLTO.so.
I am using freebsd 10.1 release. How to enable the gold linker for link time optimizations?
also how can I enable it to be the default linker?
You may want to use ld.gold instead of ld. It is installed at /usr/local/bin/ld.gold. If you are using a Makefile, it would work by setting LD variable to ld.gold, either by modifying your Makefile or specifying it on command line. Example in case you are using lang/clang37:
gmake all CC=clang37 LD=ld.gold
EDIT:
It would be even more neat if you add -fuse-ld=gold to your LDFLAGS:
LDFLAGS=-fuse-ld=gold
I'm not sure ld.bfd allows plugins, but I could be wrong.
Your /usr/bin/ld should be a symlink to whatever linker you want. You can change which linker is used by using binutils-config. Check the man-page here: http://www.linuxhowtos.org/manpages/8/binutils-config.htm. I realise this is a Linux link, but it's directed at binutils itself rather than linux-specifically.
It should be something along the lines binutils-config --gold.
On my Gentoo box it is binutils --linker=gold
EDIT: As pointed out, binutils-config doesn't work on BSD it seems. You can still manually update the symlinks though, the downside is that there might be a few of them.
You can find out which ld is used by your compiler by using gcc -print-prog-name=ld or clang -print-prog-name=ld. The file printed should be a symlink you can re-create to point to ld.gold as oposed to ld.bfd.

Resources