How to input null-value into specflow step definition table - bdd

How can I input a null value in Specflow through a table?
Let's look at an overly simplistic example:
When a tire is attached to a car
| CarId | TireModel | FabricationDate | Batch |
| 1 | Nokian Hakka R | 2015-09-1 | |
The empty string in the Batch column is interpreted as text by specflow and as such, empty string. Is there a special syntax to mark that column as null?

You can create your own IValueRetriever and replace default one with yours
public class StringValueRetriver : IValueRetriever
{
public bool CanRetrieve(KeyValuePair<string, string> keyValuePair, Type targetType, Type propertyType)
{
return propertyType == typeof(string);
}
public object Retrieve(KeyValuePair<string, string> keyValuePair, Type targetType, Type propertyType)
{
return string.IsNullOrEmpty(keyValuePair.Value) ? null : keyValuePair.Value;
}
}
Some where in your scenario steps
[BeforeScenario]
public void BeforeScenario()
{
Service.Instance.ValueRetrievers.Unregister<TechTalk.SpecFlow.Assist.ValueRetrievers.StringValueRetriever>();
Service.Instance.ValueRetrievers.Register(new StringValueRetriver());
}
older syntax:
[BeforeScenario]
public void BeforeScenario()
{
var defaultStringValueRetriever = Service.Instance.ValueRetrievers.FirstOrDefault(vr => vr is TechTalk.SpecFlow.Assist.ValueRetrievers.StringValueRetriever);
if (defaultStringValueRetriever != null)
{
Service.Instance.UnregisterValueRetriever(defaultStringValueRetriever);
Service.Instance.RegisterValueRetriever(new StringValueRetriver());
}
}

From SpecFlow 3 on-wards, in your Steps class, you can just put the following code. And in the feature file just put null value like this. Now when you use the CreateSet function then it will be deserialized correctly.
Id | Value
1 | <null>
[Binding]
public static class YourStepClass
{
[BeforeTestRun]
public static void BeforeTestRun()
{
Service.Instance.ValueRetrievers.Register(new NullValueRetriever("<null>"));
}
}

I don't believe there is a special syntax for null and I think you'll have to just handle the conversion yourself. The value retrievers have been revised in the v2 branch and you might be able to handle this by deregistering the standard string value retriever and registering your own implementation which looks for some special syntax and returns null.
In the current 1.9.* version though I think you'll just have to check for empty string and return null yourself.

I've just chosen to do this on a case by case manner using a simple extension method.
In the handler I convert the passed in example value parameter and call NullIfEmpty()
Example usage
AndICheckTheBatchNumber(string batch) {
batch = batch.NullIfEmpty();
//use batch as null how you intended
}
Extension method
using System;
namespace Util.Extensions
{
public static class StringExtensions
{
public static string NullIfEmpty(this string str)
{
if (string.IsNullOrEmpty(str))
{
return null;
}
return str;
}
}
}

Combining answers, I did the following:
using TechTalk.SpecFlow;
using TechTalk.SpecFlow.Assist;
using TechTalk.SpecFlow.Assist.ValueRetrievers;
namespace Util.Extensions
{
public class NullValueComparer : IValueComparer
{
private readonly string _nullValue;
public NullValueComparer(string nullValue)
{
_nullValue = nullValue;
}
public bool CanCompare(object actualValue)
{
return actualValue is null || actualValue is string;
}
public bool Compare(string expectedValue, object actualValue)
{
if (_nullValue == expectedValue)
{
return actualValue == null;
}
return expectedValue == (string)actualValue;
}
}
}
And referenced it like this:
[Binding]
public class MyStepDefinitions
{
private MyTestDto _testDto;
private AnotherDtoFromElsewhere _actual;
[BeforeScenario]
public void BeforeTestRun()
{
Service.Instance.ValueRetrievers.Register(new NullValueRetriever("<null>"));
Service.Instance.ValueComparers.Register(new NullValueComparer("<null>"));
}
[When(#"Some test with table:")]
public void WhenTestWithTable(Table table)
{
_testDto = table.CreateInstance<MyTestDto>();
var actual = new AnotherDtoFromElsewhere();
table.CompareToInstance(actual);
}
[Then(#"X should match:")]
public void ThenShouldMatch(Table table)
{
table.CompareToInstance(_actual);
}
}

Related

Binding between an Object and a SimpleIntegerProperty

I have a combo box over my GUI in JavaFX.
This Combo Box is composed of a complex type elements :
public class DureeChoiceBoxElement extends ObservableValueBase<DureeChoiceBoxElement> {
private IntegerProperty duree;
#Override
public String toString() {
return duree.get() + " an";
}
}
I want to map (or bind) the selected complex element with my model which contains the simple type :
public class Pel {
private IntegerProperty duree = new SimpleIntegerProperty(1);
public Property<Number> dureeProperty() {
return duree;
}
public void setDuree(Integer duree) {
this.duree.setValue(duree);
}
public Integer getDuree() {
return duree.getValue();
}
}
How to do it ?
I tried in the controller with :
public class PelController {
#FXML
private ChoiceBox<DureeChoiceBoxElement> duree;
//etc..
pel.dureeProperty().bind(createElapsedBindingByBindingsAPI2(duree.getValue()));
/*
* #return an ObjectBinding of immutable TimeElapsed objects for the player
*/
private ObjectBinding<Property<Number>> createElapsedBindingByBindingsAPI2(
final DureeChoiceBoxElement dureeChoiceBoxElement) {
return Bindings.createObjectBinding(new Callable<Property<Number>>() {
#Override
public IntegerProperty call() throws Exception {
return dureeChoiceBoxElement.dureeProperty();
}
}, dureeChoiceBoxElement.dureeProperty());
}
}
But it doesn't work (even not compile). I want to say that "Bind this simple property to this complex Object calling the method I give you through the method named "createElapsedBindingByBindingsAPI2(..)".
It is logical read but I didn't managed to make it works anyway.
That's poor ....
Any help please :).
Example that (obviously) works with legacy code style (Swing coding) :
duree.getSelectionModel().selectedItemProperty().addListener(new ChangeListener<DureeChoiceBoxElement>() {
#Override
public void changed(ObservableValue<? extends DureeChoiceBoxElement> observable,
DureeChoiceBoxElement oldValue, DureeChoiceBoxElement newValue) {
// changement durée
log.debug("Durée sélectionnée : {}", duree.getSelectionModel().getSelectedItem().getDuree());
log.debug("Durée bindée ? : {}", pel.getDuree());
pel.setDuree(duree.getSelectionModel().getSelectedItem().getDuree());
}
});
Like this my model is set to selected item. But it implies some boilerplate code. Any better idea based on high level bindings of JavaFX ?

How can I override the 'map' constructor in a Grails domain class?

I need to perform some initialization when new instances of my domain class are created.
class ActivationToken {
String foo
String bar
}
When I do this I want bar to be initialized by code inside ActivationToken:
def tok = new ActivationToken(foo:'a')
I cannot see how to 'override' the 'constructor' to make this happen. I know in this case I could just add a normal constructor but this is just a simple example.
The map constructor is coming from Groovy - not Grails in this case. I did some experimentation, and this is what I came up with:
class Foo {
String name = "bob"
int num = 0
public Foo() {
this([:])
}
public Foo(Map map) {
map?.each { k, v -> this[k] = v }
name = name.toUpperCase()
}
public String toString() {
"$name=$num"
}
}
assert 'BOB=0' == new Foo().toString()
assert 'JOE=32' == new Foo(name:"joe", num: 32).toString()
Basically, it appears that you'll have to manually override the constructors if you need to process the property after construction.
Alternately, you can override individual setters, which is cleaner and safer in general:
class Foo {
String name = "bob"
int num = 0
public void setName(n) {
name = n.toUpperCase()
}
public String toString() {
"$name=$num"
}
}
assert 'bob=0' == new Foo().toString()
assert 'JOE=32' == new Foo(name:"joe", num: 32).toString()
Note that the default value isn't processed, but that should be OK in most instances.
The solution above is also good for cases where initializing an object from parameters in a web request, for example, where you wish to ignore extraneous values, catching Missing property exceptions.
public Foo(Map map) {
try {
map?.each { k, v -> this[k] = v }
}
catch(Exception e){
}
}

db4o Tranparent Persistence doesn't store later objects in my own ActivatableCollection<T>

I'm rolling my own ActivatableCollection<T> for db4o but cribbing heavily from the builtin ActivatableList<T> implementation. I'm running into the problem where transparent persistence doesn't seem to be working correctly. In the test code below:
[Fact]
void CanStoreActivatableCollection()
{
var planets = new ActivatableCollection<Planet>();
var pagingMemoryStorage = new PagingMemoryStorage();
var config = Db4oEmbedded.NewConfiguration();
config.Common.Add(new TransparentActivationSupport());
config.Common.Add(new TransparentPersistenceSupport());
config.File.Storage = pagingMemoryStorage;
var objectContainer = Db4oEmbedded.OpenFile(config, "Memory.yap");
planets.Add(new Planet("Mercury"));
objectContainer.Store(planets);
planets.Add(new Planet("Venus"));
planets.Add(new Planet("Earth"));
objectContainer.Commit();
objectContainer.Close();
config = Db4oEmbedded.NewConfiguration();
config.Common.Add(new TransparentActivationSupport());
config.Common.Add(new TransparentPersistenceSupport());
config.File.Storage = pagingMemoryStorage;
objectContainer = Db4oEmbedded.OpenFile(config, "Memory.yap");
planets = objectContainer.Query<ActivatableCollection<Planet>>().FirstOrDefault();
Assert.NotNull(planets);
Assert.Equal(3, planets.Count);
objectContainer.Close();
}
The planet "Mercury" is stored, but not "Venus" and "Earth". If I change from ActivatableCollection to ActivatableList, then all 3 planets are stored.
What am I missing? My ActivatableCollection is just minimal implementation of ActivatableList as best as I can tell.
Below is my implementation of ActivatableCollection:
public class ActivatableCollection<T>
: ICollection<T>
, IActivatable
, INotifyCollectionChanged
{
List<T> _list;
List<T> List
{
get
{
if (_list == null)
_list = new List<T>();
return _list;
}
}
public ActivatableCollection()
{
}
public int Count
{
get
{
ActivateForRead();
return List.Count;
}
}
public bool IsReadOnly
{
get
{
ActivateForRead();
return ((IList) List).IsReadOnly;
}
}
public void Add(T t)
{
ActivateForWrite();
List.Add(t);
OnCollectionChanged(new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Add, t));
}
public void Clear()
{
ActivateForWrite();
List.Clear();
OnCollectionChanged(new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Reset));
}
public bool Contains(T t)
{
ActivateForRead();
return List.Contains(t);
}
public void CopyTo(T[] array, int index)
{
ActivateForRead();
List.CopyTo(array, index);
}
public IEnumerator<T> GetEnumerator()
{
ActivateForRead();
return List.GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
public bool Remove(T t)
{
ActivateForWrite();
bool removed = List.Remove(t);
if (removed)
OnCollectionChanged(new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Remove, t));
return removed;
}
[Transient]
private IActivator _activator;
public virtual void Bind(IActivator activator)
{
if (_activator == activator)
return;
if (activator != null && _activator != null)
throw new InvalidOperationException();
_activator = activator;
}
public virtual void Activate(ActivationPurpose purpose)
{
if (_activator == null)
return;
_activator.Activate(purpose);
}
protected virtual void ActivateForRead()
{
Activate(ActivationPurpose.Read);
}
protected virtual void ActivateForWrite()
{
Activate(ActivationPurpose.Write);
}
[Transient]
public event NotifyCollectionChangedEventHandler CollectionChanged;
protected virtual void OnCollectionChanged(NotifyCollectionChangedEventArgs e)
{
if (CollectionChanged != null)
CollectionChanged(this, e);
}
}
I've also tried copying the code from GenericTypeHandlerPredicate and registering my ActivatableCollection to use the GenericCollectionTypeHandler. That results in a crash in GenericTypeFor() throwing an InvalidOperationException() when "Mercury" is being stored.
Just want to mention my answers from the db4o forums also here, for people with a similar problem:
First part of the issue:
From db4o's point of view nothing has changed in the 'ActivatableCollection' object and therefore no changes are stored. This is what is happening:
When you add the items, the ActivatableCollection is marked as changed.
When you commit the changes are stored. However the ' ActivatableCollection' holds the reference to the same object. db4o only stores the changes in the ActivatableCollection-object, which is the reference to the List. Since it is the same, no actual change is stored.
The List of the ActivatableCollection is never updated, because it wasn't marked as 'changed'
So the transparent activation doesn't see the changes in the list. You can fix your issue simply by using an ActivatableList in you're ActivatableCollection implementation. Just change the List with a IList interface and instantiate a ActivatableList instead of an List.
The second part of the issue: Why doesn't it work even when registering the GenericCollectionTypeHandler for this type? Here we hit a implementation detail. The GenericCollectionTypeHandler has an internal list of supported types, which doesn't include the self made 'ActivatableCollection'. GenericCollectionTypeHandler is not really part of the public API and intendet for internal use only.
Workaround / Fix
Just use an ActivatableList<T> instead of a List<T>. then everything works fine.

Method to create and store method chain at runtime

The problem I have is that I need to do about 40+ conversions to convert loosely typed info into strongly typed info stored in db, xml file, etc.
I'm plan to tag each type with a tuple i.e. a transformational form like this:
host.name.string:host.dotquad.string
which will offer a conversion from the input to an output form. For example, the name stored in the host field of type string, the input is converted into a dotquad notation of type string and stored back into host field. More complex conversions may need several steps, with each step being accomplished by a method call, hence method chaining.
Examining further the example above, the tuple 'host.name.string' with the field host of name www.domain.com. A DNS lookup is done to covert domain name to IP address. Another method is applied to change the type returned by the DNS lookup into the internal type of dotquad of type string. For this transformation, there is 4 seperate methods called to convert from one tuple into another. Some other conversions may require more steps.
Ideally I would like an small example of how method chains are constructed at runtime. Development time method chaining is relatively trivial, but would require pages and pages of code to cover all possibilites, with 40+ conversions.
One way I thought of doing is, is parsing the tuples at startup, and writing the chains out to an assembly, compiling it, then using reflection to load/access. Its would be really ugly and negate the performance increases i'm hoping to gain.
I'm using Mono, so no C# 4.0
Any help would be appreciated.
Bob.
Here is a quick and dirty solution using LINQ Expressions. You have indicated that you want C# 2.0, this is 3.5, but it does run on Mono 2.6. The method chaining is a bit hacky as i didn't exactly know how your version works, so you might need to tweak the expression code to suit.
The real magic really happens in the Chainer class, which takes a collection of strings, which represent the MethodChain subclass. Take a collection like this:
{
"string",
"string",
"int"
}
This will generate a chain like this:
new StringChain(new StringChain(new IntChain()));
Chainer.CreateChain will return a lambda that calls MethodChain.Execute(). Because Chainer.CreateChain uses a bit of reflection, it's slow, but it only needs to run once for each expression chain. The execution of the lambda is nearly as fast as calling actual code.
Hope you can fit this into your architecture.
public abstract class MethodChain {
private MethodChain[] m_methods;
private object m_Result;
public MethodChain(params MethodChain[] methods) {
m_methods = methods;
}
public MethodChain Execute(object expression) {
if(m_methods != null) {
foreach(var method in m_methods) {
expression = method.Execute(expression).GetResult<object>();
}
}
m_Result = ExecuteInternal(expression);
return this;
}
protected abstract object ExecuteInternal(object expression);
public T GetResult<T>() {
return (T)m_Result;
}
}
public class IntChain : MethodChain {
public IntChain(params MethodChain[] methods)
: base(methods) {
}
protected override object ExecuteInternal(object expression) {
return int.Parse(expression as string);
}
}
public class StringChain : MethodChain {
public StringChain(params MethodChain[] methods):base(methods) {
}
protected override object ExecuteInternal(object expression) {
return (expression as string).Trim();
}
}
public class Chainer {
/// <summary>
/// methods are executed from back to front, so methods[1] will call method[0].Execute before executing itself
/// </summary>
/// <param name="methods"></param>
/// <returns></returns>
public Func<object, MethodChain> CreateChain(IEnumerable<string> methods) {
Expression expr = null;
foreach(var methodName in methods.Reverse()) {
ConstructorInfo cInfo= null;
switch(methodName.ToLower()) {
case "string":
cInfo = typeof(StringChain).GetConstructor(new []{typeof(MethodChain[])});
break;
case "int":
cInfo = typeof(IntChain).GetConstructor(new[] { typeof(MethodChain[]) });
break;
}
if(cInfo == null)
continue;
if(expr != null)
expr = Expression.New(cInfo, Expression.NewArrayInit( typeof(MethodChain), Expression.Convert(expr, typeof(MethodChain))));
else
expr = Expression.New(cInfo, Expression.Constant(null, typeof(MethodChain[])));
}
var objParam = Expression.Parameter(typeof(object));
var methodExpr = Expression.Call(expr, typeof(MethodChain).GetMethod("Execute"), objParam);
Func<object, MethodChain> lambda = Expression.Lambda<Func<object, MethodChain>>(methodExpr, objParam).Compile();
return lambda;
}
[TestMethod]
public void ExprTest() {
Chainer chainer = new Chainer();
var lambda = chainer.CreateChain(new[] { "int", "string" });
var result = lambda(" 34 ").GetResult<int>();
Assert.AreEqual(34, result);
}
}
The command pattern would fit here. What you could do is queue up commands as you need different operations performed on the different data types. Those messages could then all be processed and call the appropriate methods when you're ready later on.
This pattern can be implemented in .NET 2.0.
Do you really need to do this at execution time? Can't you create the combination of operations using code generation?
Let me elaborate:
Assuming you have a class called Conversions which contains all the 40+ convertions you mentioned like this:
//just pseudo code..
class conversions{
string host_name(string input){}
string host_dotquad(string input){}
int type_convert(string input){}
float type_convert(string input){}
float increment_float(float input){}
}
Write a simple console app or something similar which uses reflection to generate code for methods like this:
execute_host_name(string input, Queue<string> conversionQueue)
{
string ouput = conversions.host_name(input);
if(conversionQueue.Count == 0)
return output;
switch(conversionQueue.dequeue())
{
// generate case statements only for methods that take in
// a string as parameter because the host_name method returns a string.
case "host.dotquad": return execute_host_dotquad(output,conversionQueue);
case "type.convert": return execute_type_convert(output, conversionQueue);
default: // exception...
}
}
Wrap all this in a Nice little execute method like this:
object execute(string input, string [] conversions)
{
Queue<string> conversionQueue = //create the queue..
case(conversionQueue.dequeue())
{
case "host.name": return execute_host_name(output,conversionQueue);
case "host.dotquad": return execute_host_dotquad(output,conversionQueue);
case "type.convert": return execute_type_convert(output, conversionQueue);
default: // exception...
}
}
This code generation application need to be executed only when your method signatures changes or when you decide to add new transformations.
Main advantages:
No runtime overhead
Easy to add/delete/change the conversions (code generator will take care of the code changes :) )
What do you think?
I apologize for the long code dump and the fact that it is in Java, rather than C#, but I found your problem quite interesting and I do not have much C# experience. Hopefully you will be able to adapt this solution without difficulty.
One approach to solving your problem is to create a cost for each conversion -- usually this is related to the accuracy of the conversion -- and then perform a search to find the best possible conversion sequence to get from one type to another.
The reason for needing a cost function is to choose among multiple conversion paths. For example, converting from an integer to a string is lossless, but there is no guarantee that every string can be represented by an integer. So, if you had two conversion chains
string -> integer -> float -> decimal
string -> float -> decimal
You would want to select the second one because it will reduce the chance of a conversion failure.
The Java code below implements such a scheme and performs a best-first search to find an optimal conversion sequence. I hope you find it useful. Running the code produces the following output:
> No conversion possible from string to integer
> The optimal conversion sequence from string to host.dotquad.string is:
> string to host.name.string, cost = -1.609438
> host.name.string to host.dns, cost = -1.609438 *PERFECT*
> host.dns to host.dotquad, cost = -1.832581
> host.dotquad to host.dotquad.string, cost = -1.832581 *PERFECT*
Here is the Java code.
/**
* Use best-first search to find an optimal sequence of operations for
* performing a type conversion with maximum fidelity.
*/
import java.util.*;
public class TypeConversion {
/**
* Define a type-conversion interface. It converts between to
* user-defined types and provides a measure of fidelity (accuracy)
* of the conversion.
*/
interface ITypeConverter<T, F> {
public T convert(F from);
public double fidelity();
// Could use reflection instead of handling this explicitly
public String getSourceType();
public String getTargetType();
}
/**
* Create a set of user-defined types.
*/
class HostName {
public String hostName;
public HostName(String hostName) {
this.hostName = hostName;
}
}
class DnsLookup {
public String ipAddress;
public DnsLookup(HostName hostName) {
this.ipAddress = doDNSLookup(hostName);
}
private String doDNSLookup(HostName hostName) {
return "127.0.0.1";
}
}
class DottedQuad {
public int[] quad = new int[4];
public DottedQuad(DnsLookup lookup) {
String[] split = lookup.ipAddress.split(".");
for ( int i = 0; i < 4; i++ )
quad[i] = Integer.parseInt( split[i] );
}
}
/**
* Define a set of conversion operations between the types. We only
* implement a minimal number for brevity, but this could be expanded.
*
* We start by creating some broad classes to differentiate among
* perfect, good and bad conversions.
*/
abstract class PerfectTypeConversion<T, F> implements ITypeConverter<T, F> {
public abstract T convert(F from);
public double fidelity() { return 1.0; }
}
abstract class GoodTypeConversion<T, F> implements ITypeConverter<T, F> {
public abstract T convert(F from);
public double fidelity() { return 0.8; }
}
abstract class BadTypeConversion<T, F> implements ITypeConverter<T, F> {
public abstract T convert(F from);
public double fidelity() { return 0.2; }
}
/**
* Concrete classes that do the actual conversions.
*/
class StringToHostName extends BadTypeConversion<HostName, String> {
public HostName convert(String from) { return new HostName(from); }
public String getSourceType() { return "string"; }
public String getTargetType() { return "host.name.string"; }
}
class HostNameToDnsLookup extends PerfectTypeConversion<DnsLookup, HostName> {
public DnsLookup convert(HostName from) { return new DnsLookup(from); }
public String getSourceType() { return "host.name.string"; }
public String getTargetType() { return "host.dns"; }
}
class DnsLookupToDottedQuad extends GoodTypeConversion<DottedQuad, DnsLookup> {
public DottedQuad convert(DnsLookup from) { return new DottedQuad(from); }
public String getSourceType() { return "host.dns"; }
public String getTargetType() { return "host.dotquad"; }
}
class DottedQuadToString extends PerfectTypeConversion<String, DottedQuad> {
public String convert(DottedQuad f) {
return f.quad[0] + "." + f.quad[1] + "." + f.quad[2] + "." + f.quad[3];
}
public String getSourceType() { return "host.dotquad"; }
public String getTargetType() { return "host.dotquad.string"; }
}
/**
* To find the best conversion sequence, we need to instantiate
* a list of converters.
*/
ITypeConverter<?,?> converters[] =
{
new StringToHostName(),
new HostNameToDnsLookup(),
new DnsLookupToDottedQuad(),
new DottedQuadToString()
};
Map<String, List<ITypeConverter<?,?>>> fromMap =
new HashMap<String, List<ITypeConverter<?,?>>>();
public void buildConversionMap()
{
for ( ITypeConverter<?,?> converter : converters )
{
String type = converter.getSourceType();
if ( !fromMap.containsKey( type )) {
fromMap.put( type, new ArrayList<ITypeConverter<?,?>>());
}
fromMap.get(type).add(converter);
}
}
public class Tuple implements Comparable<Tuple>
{
public String type;
public double cost;
public Tuple parent;
public Tuple(String type, double cost, Tuple parent) {
this.type = type;
this.cost = cost;
this.parent = parent;
}
public int compareTo(Tuple o) {
return Double.compare( cost, o.cost );
}
}
public Tuple findOptimalConversionSequence(String from, String target)
{
PriorityQueue<Tuple> queue = new PriorityQueue<Tuple>();
// Add a dummy start node to the queue
queue.add( new Tuple( from, 0.0, null ));
// Perform the search
while ( !queue.isEmpty() )
{
// Pop the most promising candidate from the list
Tuple tuple = queue.remove();
// If the type matches the target type, return
if ( tuple.type == target )
return tuple;
// If we have reached a dead-end, backtrack
if ( !fromMap.containsKey( tuple.type ))
continue;
// Otherwise get all of the possible conversions to
// perform next and add their costs
for ( ITypeConverter<?,?> converter : fromMap.get( tuple.type ))
{
String type = converter.getTargetType();
double cost = tuple.cost + Math.log( converter.fidelity() );
queue.add( new Tuple( type, cost, tuple ));
}
}
// No solution
return null;
}
public static void convert(String from, String target)
{
TypeConversion tc = new TypeConversion();
// Build a conversion lookup table
tc.buildConversionMap();
// Find the tail of the optimal conversion chain.
Tuple tail = tc.findOptimalConversionSequence( from, target );
if ( tail == null ) {
System.out.println( "No conversion possible from " + from + " to " + target );
return;
}
// Reconstruct the conversion path (skip dummy node)
List<Tuple> solution = new ArrayList<Tuple>();
for ( ; tail.parent != null ; tail = tail.parent )
solution.add( tail );
Collections.reverse( solution );
StringBuilder sb = new StringBuilder();
Formatter formatter = new Formatter(sb);
sb.append( "The optimal conversion sequence from " + from + " to " + target + " is:\n" );
for ( Tuple tuple : solution ) {
formatter.format( "%20s to %20s, cost = %f", tuple.parent.type, tuple.type, tuple.cost );
if ( tuple.cost == tuple.parent.cost )
sb.append( " *PERFECT*");
sb.append( "\n" );
}
System.out.println( sb.toString() );
}
public static void main(String[] args)
{
// Run two tests
convert( "string", "integer" );
convert( "string", "host.dotquad.string" );
}
}

How to cache data in a MVC application

I have read lots of information about page caching and partial page caching in a MVC application. However, I would like to know how you would cache data.
In my scenario I will be using LINQ to Entities (entity framework). On the first call to GetNames (or whatever the method is) I want to grab the data from the database. I want to save the results in cache and on the second call to use the cached version if it exists.
Can anyone show an example of how this would work, where this should be implemented (model?) and if it would work.
I have seen this done in traditional ASP.NET apps , typically for very static data.
Here's a nice and simple cache helper class/service I use:
using System.Runtime.Caching;
public class InMemoryCache: ICacheService
{
public T GetOrSet<T>(string cacheKey, Func<T> getItemCallback) where T : class
{
T item = MemoryCache.Default.Get(cacheKey) as T;
if (item == null)
{
item = getItemCallback();
MemoryCache.Default.Add(cacheKey, item, DateTime.Now.AddMinutes(10));
}
return item;
}
}
interface ICacheService
{
T GetOrSet<T>(string cacheKey, Func<T> getItemCallback) where T : class;
}
Usage:
cacheProvider.GetOrSet("cache key", (delegate method if cache is empty));
Cache provider will check if there's anything by the name of "cache id" in the cache, and if there's not, it will call a delegate method to fetch data and store it in cache.
Example:
var products=cacheService.GetOrSet("catalog.products", ()=>productRepository.GetAll())
Reference the System.Web dll in your model and use System.Web.Caching.Cache
public string[] GetNames()
{
string[] names = Cache["names"] as string[];
if(names == null) //not in cache
{
names = DB.GetNames();
Cache["names"] = names;
}
return names;
}
A bit simplified but I guess that would work. This is not MVC specific and I have always used this method for caching data.
I'm referring to TT's post and suggest the following approach:
Reference the System.Web dll in your model and use System.Web.Caching.Cache
public string[] GetNames()
{
var noms = Cache["names"];
if(noms == null)
{
noms = DB.GetNames();
Cache["names"] = noms;
}
return ((string[])noms);
}
You should not return a value re-read from the cache, since you'll never know if at that specific moment it is still in the cache. Even if you inserted it in the statement before, it might already be gone or has never been added to the cache - you just don't know.
So you add the data read from the database and return it directly, not re-reading from the cache.
For .NET 4.5+ framework
add reference: System.Runtime.Caching
add using statement:
using System.Runtime.Caching;
public string[] GetNames()
{
var noms = System.Runtime.Caching.MemoryCache.Default["names"];
if(noms == null)
{
noms = DB.GetNames();
System.Runtime.Caching.MemoryCache.Default["names"] = noms;
}
return ((string[])noms);
}
In the .NET Framework 3.5 and earlier versions, ASP.NET provided an in-memory cache implementation in the System.Web.Caching namespace. In previous versions of the .NET Framework, caching was available only in the System.Web namespace and therefore required a dependency on ASP.NET classes. In the .NET Framework 4, the System.Runtime.Caching namespace contains APIs that are designed for both Web and non-Web applications.
More info:
https://msdn.microsoft.com/en-us/library/dd997357(v=vs.110).aspx
https://learn.microsoft.com/en-us/dotnet/framework/performance/caching-in-net-framework-applications
Steve Smith did two great blog posts which demonstrate how to use his CachedRepository pattern in ASP.NET MVC. It uses the repository pattern effectively and allows you to get caching without having to change your existing code.
http://ardalis.com/Introducing-the-CachedRepository-Pattern
http://ardalis.com/building-a-cachedrepository-via-strategy-pattern
In these two posts he shows you how to set up this pattern and also explains why it is useful. By using this pattern you get caching without your existing code seeing any of the caching logic. Essentially you use the cached repository as if it were any other repository.
I have used it in this way and it works for me.
https://msdn.microsoft.com/en-us/library/system.web.caching.cache.add(v=vs.110).aspx
parameters info for system.web.caching.cache.add.
public string GetInfo()
{
string name = string.Empty;
if(System.Web.HttpContext.Current.Cache["KeyName"] == null)
{
name = GetNameMethod();
System.Web.HttpContext.Current.Cache.Add("KeyName", name, null, DateTime.Noew.AddMinutes(5), Cache.NoSlidingExpiration, CacheitemPriority.AboveNormal, null);
}
else
{
name = System.Web.HttpContext.Current.Cache["KeyName"] as string;
}
return name;
}
AppFabric Caching is distributed and an in-memory caching technic that stores data in key-value pairs using physical memory across multiple servers. AppFabric provides performance and scalability improvements for .NET Framework applications. Concepts and Architecture
Extending #Hrvoje Hudo's answer...
Code:
using System;
using System.Runtime.Caching;
public class InMemoryCache : ICacheService
{
public TValue Get<TValue>(string cacheKey, int durationInMinutes, Func<TValue> getItemCallback) where TValue : class
{
TValue item = MemoryCache.Default.Get(cacheKey) as TValue;
if (item == null)
{
item = getItemCallback();
MemoryCache.Default.Add(cacheKey, item, DateTime.Now.AddMinutes(durationInMinutes));
}
return item;
}
public TValue Get<TValue, TId>(string cacheKeyFormat, TId id, int durationInMinutes, Func<TId, TValue> getItemCallback) where TValue : class
{
string cacheKey = string.Format(cacheKeyFormat, id);
TValue item = MemoryCache.Default.Get(cacheKey) as TValue;
if (item == null)
{
item = getItemCallback(id);
MemoryCache.Default.Add(cacheKey, item, DateTime.Now.AddMinutes(durationInMinutes));
}
return item;
}
}
interface ICacheService
{
TValue Get<TValue>(string cacheKey, Func<TValue> getItemCallback) where TValue : class;
TValue Get<TValue, TId>(string cacheKeyFormat, TId id, Func<TId, TValue> getItemCallback) where TValue : class;
}
Examples
Single item caching (when each item is cached based on its ID because caching the entire catalog for the item type would be too intensive).
Product product = cache.Get("product_{0}", productId, 10, productData.getProductById);
Caching all of something
IEnumerable<Categories> categories = cache.Get("categories", 20, categoryData.getCategories);
Why TId
The second helper is especially nice because most data keys are not composite. Additional methods could be added if you use composite keys often. In this way you avoid doing all sorts of string concatenation or string.Formats to get the key to pass to the cache helper. It also makes passing the data access method easier because you don't have to pass the ID into the wrapper method... the whole thing becomes very terse and consistant for the majority of use cases.
Here's an improvement to Hrvoje Hudo's answer. This implementation has a couple of key improvements:
Cache keys are created automatically based on the function to update data and the object passed in that specifies dependencies
Pass in time span for any cache duration
Uses a lock for thread safety
Note that this has a dependency on Newtonsoft.Json to serialize the dependsOn object, but that can be easily swapped out for any other serialization method.
ICache.cs
public interface ICache
{
T GetOrSet<T>(Func<T> getItemCallback, object dependsOn, TimeSpan duration) where T : class;
}
InMemoryCache.cs
using System;
using System.Reflection;
using System.Runtime.Caching;
using Newtonsoft.Json;
public class InMemoryCache : ICache
{
private static readonly object CacheLockObject = new object();
public T GetOrSet<T>(Func<T> getItemCallback, object dependsOn, TimeSpan duration) where T : class
{
string cacheKey = GetCacheKey(getItemCallback, dependsOn);
T item = MemoryCache.Default.Get(cacheKey) as T;
if (item == null)
{
lock (CacheLockObject)
{
item = getItemCallback();
MemoryCache.Default.Add(cacheKey, item, DateTime.Now.Add(duration));
}
}
return item;
}
private string GetCacheKey<T>(Func<T> itemCallback, object dependsOn) where T: class
{
var serializedDependants = JsonConvert.SerializeObject(dependsOn);
var methodType = itemCallback.GetType();
return methodType.FullName + serializedDependants;
}
}
Usage:
var order = _cache.GetOrSet(
() => _session.Set<Order>().SingleOrDefault(o => o.Id == orderId)
, new { id = orderId }
, new TimeSpan(0, 10, 0)
);
public sealed class CacheManager
{
private static volatile CacheManager instance;
private static object syncRoot = new Object();
private ObjectCache cache = null;
private CacheItemPolicy defaultCacheItemPolicy = null;
private CacheEntryRemovedCallback callback = null;
private bool allowCache = true;
private CacheManager()
{
cache = MemoryCache.Default;
callback = new CacheEntryRemovedCallback(this.CachedItemRemovedCallback);
defaultCacheItemPolicy = new CacheItemPolicy();
defaultCacheItemPolicy.AbsoluteExpiration = DateTime.Now.AddHours(1.0);
defaultCacheItemPolicy.RemovedCallback = callback;
allowCache = StringUtils.Str2Bool(ConfigurationManager.AppSettings["AllowCache"]); ;
}
public static CacheManager Instance
{
get
{
if (instance == null)
{
lock (syncRoot)
{
if (instance == null)
{
instance = new CacheManager();
}
}
}
return instance;
}
}
public IEnumerable GetCache(String Key)
{
if (Key == null || !allowCache)
{
return null;
}
try
{
String Key_ = Key;
if (cache.Contains(Key_))
{
return (IEnumerable)cache.Get(Key_);
}
else
{
return null;
}
}
catch (Exception)
{
return null;
}
}
public void ClearCache(string key)
{
AddCache(key, null);
}
public bool AddCache(String Key, IEnumerable data, CacheItemPolicy cacheItemPolicy = null)
{
if (!allowCache) return true;
try
{
if (Key == null)
{
return false;
}
if (cacheItemPolicy == null)
{
cacheItemPolicy = defaultCacheItemPolicy;
}
String Key_ = Key;
lock (Key_)
{
return cache.Add(Key_, data, cacheItemPolicy);
}
}
catch (Exception)
{
return false;
}
}
private void CachedItemRemovedCallback(CacheEntryRemovedArguments arguments)
{
String strLog = String.Concat("Reason: ", arguments.RemovedReason.ToString(), " | Key-Name: ", arguments.CacheItem.Key, " | Value-Object: ", arguments.CacheItem.Value.ToString());
LogManager.Instance.Info(strLog);
}
}
I use two classes. First one the cache core object:
public class Cacher<TValue>
where TValue : class
{
#region Properties
private Func<TValue> _init;
public string Key { get; private set; }
public TValue Value
{
get
{
var item = HttpRuntime.Cache.Get(Key) as TValue;
if (item == null)
{
item = _init();
HttpContext.Current.Cache.Insert(Key, item);
}
return item;
}
}
#endregion
#region Constructor
public Cacher(string key, Func<TValue> init)
{
Key = key;
_init = init;
}
#endregion
#region Methods
public void Refresh()
{
HttpRuntime.Cache.Remove(Key);
}
#endregion
}
Second one is list of cache objects:
public static class Caches
{
static Caches()
{
Languages = new Cacher<IEnumerable<Language>>("Languages", () =>
{
using (var context = new WordsContext())
{
return context.Languages.ToList();
}
});
}
public static Cacher<IEnumerable<Language>> Languages { get; private set; }
}
I will say implementing Singleton on this persisting data issue can be a solution for this matter in case you find previous solutions much complicated
public class GPDataDictionary
{
private Dictionary<string, object> configDictionary = new Dictionary<string, object>();
/// <summary>
/// Configuration values dictionary
/// </summary>
public Dictionary<string, object> ConfigDictionary
{
get { return configDictionary; }
}
private static GPDataDictionary instance;
public static GPDataDictionary Instance
{
get
{
if (instance == null)
{
instance = new GPDataDictionary();
}
return instance;
}
}
// private constructor
private GPDataDictionary() { }
} // singleton
HttpContext.Current.Cache.Insert("subjectlist", subjectlist);
You can also try and use the caching built into ASP MVC:
Add the following attribute to the controller method you'd like to cache:
[OutputCache(Duration=10)]
In this case the ActionResult of this will be cached for 10 seconds.
More on this here

Resources