We need to compare two hand drawn images..these images are drawn on the sprite kit.we need to see whether these pictures are roughly match or not.
For Example, if someone draws a smile pic, we need to check whether the redrawing smile pic is looks like the first drawn smile pic or not.we need to know whether the two images look alike or not...and to calculate the accuracy percentage of how similar they are..Please suggest some solutions.Thanks in advance.
You could try draw each of the paths into bitmaps and comparing them. Here are a few suggestions for doing the comparison. If nothing else this will put you onto the correct track for resolution. The following project can give you a head start but needs to be translated to objc or Swift. This answer on code review may also prove useful.
One suggestion that seems intriguing is trying to use kCGBlendModeDestinationOver to draw the bitmaps as a trace over each other and comparing the results.
There exists a mathematical tool for this, that is called Hausdorff distance.
Entry for Hausdorff distance in Wikipedia may help you to understand how it works. I can also suggest you a scientific paper about comparing images with this Comparing images with Hausdorff distance.
You may also find using Euclidian distance for this, have a look at Euclidian distance of Images.
Related
We have this camera array arranged in an arc around a person (red dot). Think The Matrix - each camera fires at the same time and then we create an animated gif from the output. The problem is that it is near impossible to align the cameras exactly and so I am looking for a way in OpenCV to align the images better and make it smoother.
Looking for general steps. I'm unsure of the order I would do it. If I start with image 1 and match 2 to it, then 2 is further from three than it was at the start. And so matching 3 to 2 would be more change... and the error would propagate. I have seen similar alignments done though. Any help much appreciated.
Here's a thought. How about performing a quick and very simple "calibration" of the imaging system by using a single reference point?
The best thing about this is you can try it out pretty quickly and even if results are too bad for you, they can give you some more insight into the problem. But the bad thing is it may just not be good enough because it's hard to think of anything "less advanced" than this. Here's the description:
Remove the object from the scene
Place a small object (let's call it a "dot") to position that rougly corresponds to center of mass of object you are about to record (the center of area denoted by red circle).
Record a single image with each camera
Use some simple algorithm to find the position of the dot on every image
Compute distances from dot positions to image centers on every image
Shift images by (-x, -y), where (x, y) is the above mentioned distance; after that, the dot should be located in the center of every image.
When recording an actual object, use these precomputed distances to shift all images. After you translate the images, they will be roughly aligned. But since you are shooting an object that is three-dimensional and has considerable size, I am not sure whether the alignment will be very convincing ... I wonder what results you'd get, actually.
If I understand the application correctly, you should be able to obtain the relative pose of each camera in your array using homographies:
https://docs.opencv.org/3.4.0/d9/dab/tutorial_homography.html
From here, the next step would be to correct for alignment issues by estimating the transform between each camera's actual position and their 'ideal' position in the array. These ideal positions could be computed relative to a single camera, or relative to the focus point of the array (which may help simplify calculation). For each image, applying this corrective transform will result in an image that 'looks like' it was taken from the 'ideal' position.
Note that you may need to estimate relative camera pose in 3-4 array 'sections', as it looks like you have a full 180deg array (e.g. estimate homographies for 4-5 cameras at a time). As long as you have some overlap between sections it should work out.
Most of my experience with this sort of thing comes from using MATLAB's stereo camera calibrator app and related functions. Their help page gives a good overview of how to get started estimating camera pose. OpenCV has similar functionality.
https://www.mathworks.com/help/vision/ug/stereo-camera-calibrator-app.html
The cited paper by Zhang gives a great description of the mathematics of pose estimation from correspondence, if you're interested.
Is it possible to compare two intensity histograms (derived from gray-scale images) and obtain a likeness factor? In other words, I'm trying to detect the presence or absence of an soccer ball in an image. I've tried feature detection algorithms (such as SIFT/SURF) but they are not reliable enough for my application. I need something very reliable and robust.
Many thanks for your thoughts everyone.
This answer (Comparing two histograms) might help you. Generally, intensity comparisons are quite sensitive as e.g. white during day time is different from white during night time.
I think you should be able to derive something from compareHist() in openCV (http://docs.opencv.org/doc/tutorials/imgproc/histograms/histogram_comparison/histogram_comparison.html) to suit your needs if compareHist() does fit your purpose.
If not, this paper http://www.researchgate.net/publication/222417618_Tracking_the_soccer_ball_using_multiple_fixed_cameras/file/32bfe512f7e5c13133.pdf
tracks the ball from multiple cameras and you might get some more ideas from that even though you might not be using multiple cameras.
As kkuilla have mentioned, there is an available method to compare histogram, such as compareHist() in opencv
But I am not certain if it's really applicable for your program. I think you will like to use HoughTransfrom to detect circles.
More details can be seen in this paper:
https://files.nyu.edu/jb4457/public/files/research/bristol/hough-report.pdf
Look for the part with coins for the circle detection in the paper. I did recall reading up somewhere before of how to do ball detection using Hough Transform too. Can't find it now. But it should be similar to your soccer ball.
This method should work. Hope this helps. Good luck(:
What method is suitable to capture (detect) MRZ from a photo of a document? I'm thinking about cascade classifier (e.g. Viola-Jones), but it seems a bit weird to use it for this problem.
If you know that you will look for text in a passport, why not try to find passport model points on it first. Match template of a passport to it by using ASM/AAM (Active shape model, Active Appearance Model) techniques. Once you have passport position information you can cut out the regions that you are interested in. This will take some time to implement though.
Consider this approach as a great starting point:
Black top-hat followed by a horisontal derivative highlights long rows of characters.
Morphological closing operation(s) merge the nearby characters and character rows together into a single large blob.
Optional erosion operation(s) remove the small blobs.
Otsu thresholding followed by contour detection and filtering away the contours which are apparently too small, too round, or located in the wrong place will get you a small number of possible locations for the MRZ
Finally, compute bounding boxes for the locations you found and see whether you can OCR them successfully.
It may not be the most efficient way to solve the problem, but it is surprisingly robust.
A better approach would be the use of projection profile methods. A projection profile method is based on the following idea:
Create an array A with an entry for every row in your b/w input document. Now set A[i] to the number of black pixels in the i-th row of your original image.
(You can also create a vertical projection profile by considering columns in the original image instead of rows.)
Now the array A is the projected row/column histogram of your document and the problem of detecting MRZs can be approached by examining the valleys in the A histogram.
This problem, however, is not completely solved, so there are many variations and improvements. Here's some additional documentation:
Projection profiles in Google Scholar: http://scholar.google.com/scholar?q=projection+profile+method
Tesseract-ocr, a great open source OCR library: https://code.google.com/p/tesseract-ocr/
Viola & Jones' Haar-like features generate many (many (many)) features to try to describe an object and are a bit more robust to scale and the like. Their approach was a unique approach to a difficult problem.
Here, however, you have plenty of constraint on the problem and anything like that seems a bit overkill. Rather than 'optimizing early', I'd say evaluate the standard OCR tools off the shelf and see where they get you. I believe you'll be pleasantly surprised.
PS:
You'll want to preprocess the image to isolate the characters on a white background. This can be done quite easily and will help the OCR algorithms significantly.
You might want to consider using stroke width transform.
You can follow these tips to implement it.
did somebody tried to find a pizzamarker like this one with "only" OpenCV so far?
I was trying to detect this one but couldn't get good results so far. I do not know where this marker is in picture (no ROI is possible), the marker will be somewhere in the room (different ligthning effects) and not faceing orthoonal towards us. What I want - the corners and later the orientation of this marker extracted with the corners but first of all only the 5Corners. (up, down, left, right, center)
I was trying so far: threshold, noiseclearing, find contours but nothing realy helped for a good result. Chessboards or square markers are normaly found because of their (parallel) lines- i guess this can't help me here...
What is an easy way to find those markers?
How would you start?
Use other colorformat like HSV?
A step-by-step idea or tutorial would be realy helpfull. Cause i couldn't find tuts at the net. Maybe this marker isn't called pizzamarker -> does somebody knows the real name?
thx for help
First - thank you for all of your help.
It seems that several methods are usefull. Some more or less time expansive.
For me it was the easiest with a template matching but not with the same marker.
I used only a small part of it...
this can be found 5 times(4 times negative and one positive) in this new marker:
now I use only the 4 most negatives Points and the most positive and got my 5 points that I finaly wanted. To make this more sure, I check if they are close to each other and will do a cornerSubPix().
If you need something which can operate in real-time I'd go down the edge detection route and look for intersecting lines like these guys did. Seems fast and robust to lighting changes.
Read up on the Hough Line Transform in openCV to get started.
Addendum:
Black to White is the strongest edge you can have. If you create a gradient image and use the strongest edges found in the scene (via histogram or other) you will be able to limit the detection to only the black/white edges. Look for intersections. This should give you a small number of center points to apply Hough ellipse detection (or alternate) to. You could rotate in a template as a further check if you wish.
BTW.. OpenCV has Edge Detection, Hough transform and FitEllipse if you do go down this route.
actually this 'pizza' pattern is one of the building blocks of the haar featured used in the
Viola–Jones object detection framework.
So what I would do is compute the summed area table, or integral image using cv::integral(img) and then run exhaustive search for this pattern, on various scales (size dependant).
In each window you are using only 9 points (top-left, top-center, ..., bottom left).
You can train and use cvHaarDetectObjects to detect the marker using VJ.
Probably not the fastest method but it should work.
You can find more info on object detection methods using OpenCV here: http://opencv.willowgarage.com/documentation/object_detection.html
I need to automatically align an image B on top of another image A in such a way, that the contents of the image match as good as possible.
The images can be shifted in x/y directions and rotated up to 5 degrees on z, but they won't be distorted (i.e. scaled or keystoned).
Maybe someone can recommend some good links or books on this topic, or share some thoughts how such an alignment of images could be done.
If there wasn't the rotation problem, then I could simply try to compare rows of pixels with a brute-force method until I find a match, and then I know the offset and can align the image.
Do I need AI for this?
I'm having a hard time finding resources on image processing which go into detail how these alignment-algorithms work.
So what people often do in this case is first find points in the images that match then compute the best transformation matrix with least squares. The point matching is not particularly simple and often times you just use human input for this task, you have to do it all the time for calibrating cameras. Anyway, if you want to fully automate this process you can use feature extraction techniques to find matching points, there are volumes of research papers written on this topic and any standard computer vision text will have a chapter on this. Once you have N matching points, solving for the least squares transformation matrix is pretty straightforward and, again, can be found in any computer vision text, so I'll assume you got that covered.
If you don't want to find point correspondences you could directly optimize the rotation and translation using steepest descent, trouble is this is non-convex so there are no guarantees you will find the correct transformation. You could do random restarts or simulated annealing or any other global optimization tricks on top of this, that would most likely work. I can't find any references to this problem, but it's basically a digital image stabilization algorithm I had to implement it when I took computer vision but that was many years ago, here are the relevant slides though, look at "stabilization revisited". Yes, I know those slides are terrible, I didn't make them :) However, the method for determining the gradient is quite an elegant one, since finite difference is clearly intractable.
Edit: I finally found the paper that went over how to do this here, it's a really great paper and it explains the Lucas-Kanade algorithm very nicely. Also, this site has a whole lot of material and source code on image alignment that will probably be useful.
for aligning the 2 images together you have to carry out image registration technique.
In matlab, write functions for image registration and select your desirable features for reference called 'feature points' using 'control point selection tool' to register images.
Read more about image registration in the matlab help window to understand properly.