I am a novice in the field of image processing و And I'm learning common concepts between machine learning and image processing .
Suppose there is a camera in a store , that take movies from people who are into the shop ,
what we want from this movie is :
give me the number 1 if you see affable person ,
so is it related to machine learning or no it's just image processing from consecutive images ؟؟
Extracting relevant information from images(movie frames in your case) is image processing.
For example in your case you could find person face on the image.
To accomplish that you probably need some filtering and image segmentation to extract face from image. That part is pure image processing.
Next you need define some relevant descriptors like characteristic face points like lips corners etc. and perform classification based on chosen descriptors which is in the field of machine learning.
Let us look at a bigger picture, you are working in image recognition, the field, which gives you problem, which is based on some data and aim. Now, you use image processing as a set of tools and methods which make your raw data more comprehensible, you are transforming and simplifying. Finally you have a simplified description of the problem and the aim, it is up to you how to solve it. There are many approaches, one could for example find an exact solution - it would be algorithmics. Some might find out that the only reasonable solution is to create an operator-based system, where one needs access to human experts and so implement required infrostructure - this would be software engineering solution. Finally you can use existing data to create a statistical model, and this is nowadays called machine learning. So machine learning is a way of building a solution to the problem based on statistical analysis; image processing is about preparing raw data into format required for such analysis; and image recognition is the field giving you problems to solve. It is worth noting that nowadays more and more researchers try to skip image processing part and apply machine learning directly to the raw data - this is one of the main ideas behind deep convolutional neural networks - we want approaches which do not need engineers in between. We just want data and solution.
Related
I have one image stored in my bundle or in the application.
Now I want to scan images in camera and want to compare that images with my locally stored image. When image is matched I want to play one video and if user move camera from that particular image to somewhere else then I want to stop that video.
For that I have tried Wikitude sdk for iOS but it is not working properly as it is crashing anytime because of memory issues or some other reasons.
Other things came in mind that Core ML and ARKit but Core ML detect the image's properties like name, type, colors etc and I want to match the image. ARKit will not support all devices and ios and also image matching as per requirement is possible or not that I don't have idea.
If anybody have any idea to achieve this requirement they can share. every help will be appreciated. Thanks:)
Easiest way is ARKit's imageDetection. You know the limitation of devices it support. But the result it gives is wide and really easy to implement. Here is an example
Next is CoreML, which is the hardest way. You need to understand machine learning even if in brief. Then the tough part - training with your dataset. Biggest drawback is you have single image. I would discard this method.
Finally mid way solution is to use OpenCV. It might be hard but suit your need. You can find different methods of feature matching to find your image in camera feed. example here. You can use objective-c++ to code in c++ for ios.
Your task is image similarity you can do it simply and with more reliable output results using machine learning. Since your task is using camera scanning. Better option is CoreML.You can refer this link by apple for Image Similarity.You can optimize your results by training with your own datasets. Any more clarifications needed comment.
Another approach is to use a so-called "siamese network". Which really means that you use a model such as Inception-v3 or MobileNet and both images and you compare their outputs.
However, these models usually give a classification output, i.e. "this is a cat". But if you remove that classification layer from the model, it gives an output that is just a bunch of numbers that describe what sort of things are in the image but in a very abstract sense.
If these numbers for two images are very similar -- if the "distance" between them is very small -- then the two images are very similar too.
So you can take an existing Core ML model, remove the classification layer, run it twice (once on each image), which gives you two sets of numbers, and then compute the distance between these numbers. If this distance is lower than some kind of threshold, then the images are similar enough.
I am new to computer vision but I am trying to code an android/ios app which does the following:
Get the live camera preview and try to detect one flat image (logo or painting) in that. In real-time. Draw a rect around the logo if found. If there is no match, dont draw the rectangle.
I found the Tensorflow Object Detection API as a good starting point. And support was just announced for importing TensorFlow models into Core ML.
I followed a lot of tutorials to train my own object detector. The training data is the key. I found a pretty good library to generate augmented image. I have created hundreds of variation of my image source (rotation, skew etc ...).
But it has failed! This dataset is probably good for image classification (with my image in full screen) but not in context (the room).
I think transfer-learning is the key, In my case, I used the ssd_mobilenet_v1_coco model as a base. I tried to fake the context of my augmented image with the Random Erasing Data Augmentation technique without success.
What are my available solutions? Do I tackle the problem rightly? I need to make the model training as fast as possible.
May I have to use some datasets for indoor-outdoor image classification and put my image randomly above? How important are the perspectives?
Thank you!
I have created hundreds of variation of my image source (rotation, skew etc ...). But it has failed!
So that mean your model did not converge or the final performance was bad? If your model did not converge then add more data. "Hundred of samples" is very few. So use more images and make more samples, and make your sample s dispersed as possible.
I think transfer-learning is the key, In my case, I used the ssd_mobilenet_v1_coco model as a base. I tried to fake the context of my augmented image with the Random Erasing Data Augmentation technique without success.
You mean fine-tuning. Did you reduced the label to 2 (your image and background) and did fine-tuning. If you didn't then you surely failed. Oh man, you should at least show me your model definition.
What are my available solutions? Do I tackle the problem rightly? I need to make the model training as fast as possible.
To make training converge faster, just add more GPUs and train on multiple GPUs. If you don't have money, rent some GPU cluster on Azure. Believe me, it is not that expensive.
Hope that help
I need to compare two images in a project,
The images would be two fruits of the same kind -let's say two different images of two different apples-
To be more clear, the database will have images of the stages which an apple takes from the day it was picked from a tree until it gets rotten..
The user would upload an image of the apple they have and the software should compare it to all those images in the database and retrieve the data of the matching image and tell the user at which stage is it...
I did compare before images using OpenCv emgu but I really don't have much knowledge if it's the best way...
I need an expert advise is what i said in the project even possible? or the whole database images' will match the user's image!
And is this "image processing" or something else?
And is there any suggested tutorials to learn how to do this?
I know it seems not totally clear yet, but it's just a crazy idea that I wish I can get a way to know more how i can bring it to life!
N.B the project will be an android application
This is an example of a supervised image classification problem, which is a pretty broad field. You can read up on image classification here.
The way that you would approach this problem would be to define a few stages of decay (fresh, starting to rot, half rotten, completely rotten), put together a dataset of many images of the fruit in each stage, and train an image classifier on each stage. The sample dataset should contain images of many different pieces of fruit in many different settings. If you want to support different types of fruit, you would need to train a different classifier for each fruit.
There are many image classification tools out there. To name a few:
OpenCV's haar classifier
dlib's hog classifier
Matlab's Computer Vision System Toolbox
VLFeat
It would be up to you to look into which approach would work best for your situation.
Given that this is a fairly broad problem, I wouldn't expect to come up with a solid solution quickly unless you've had experience with image classification. If you are trying to develop a product, I would recommend getting in touch with a computer vision expert that you could contract to solve it.
If you are just looking to learn more about image classification, however, this could be a fun way to play around with different tools and get a feel for what's out there. You may want to start by learning about Machine Learning in general. Caltech offers a free online course that gives a pretty good intro to the subject.
Can anyone advise me way to build effective face classifier that may be able to classify many different faces (~1000)?
And i have only 1-5 examples of each face
I know about opencv face classifier, but it works bad for my task (many classes, a few samples).
It works alright for one face classification with small number of samples. But i think that 1k separate classifier is not good idea
I read a few articles about face recognition but methods from these articles reqiues a lot of samples of each class for work
PS Sorry for my writing mistakes. English in not my native language.
Actually, for giving you a proper answer, I'd be happy to know some details of your task and your data. Face Recognition is a non-trivial problem and there is no general solution for all sorts of image acquisition.
First of all, you should define how many sources of variation (posing, emotions, illumination, occlusions or time-lapse) you have in your sample and testing sets. Then you should choose an appropriate algorithm and, very importantly, preprocessing steps according to the types.
If you don't have any significant variations, then it is a good idea to consider for a small training set one of the Discrete Orthogonal Moments as a feature extraction method. They have a very strong ability to extract features without redundancy. Some of them (Hahn, Racah moments) can also work in two modes - local and global feature extraction. The topic is relatively new, and there are still few articles about it. Although, they are thought to become a very powerful tool in Image Recognition. They can be computed in near real-time by using recurrence relationships. For more information, have a look here and here.
If the pose of the individuals significantly varies, you may try to perform firstly pose correction by Active Appearance Model.
If there are lots of occlusions (glasses, hats) then using one of the local feature extractors may help.
If there is a significant time lapse between train and probe images, the local features of the faces could change over the age, then it's a good option to try one of the algorithms which use graphs for face representation so as to keep the face topology.
I believe that non of the above are implemented in OpenCV, but for some of them you can find MATLAB implementation.
I'm not native speaker as well, so sorry for the grammar
Coming to your problem , it is very unique in its way. As you said there are only few images per class , the model which we train should either have an awesome architecture which can create better features within an image itself , or there should be an different approach which can achieve this task .
I have four things which I can share as of now :
Do data pre-processing and then create a bigger dataset and train on a neural network ideally. Here, we can do pre-processing like:
- image rotation
- image shearing
- image scaling
- image blurring
- image stretching
- image translation
and create atleast 200 images per class. Please checkout opencv documentation which provides many more methods on how you can increase the size of your dataset. Once you do this, then we can apply transfer learning , which is a better approach than training a neural network from scratch.
Transfer learning is a method where we train a network on our own custom classes , and this network is already pre-trained on 1000's of classes. Since our data here is very less, I would prefer transfer learning only. I have written a blog on how you can approach this using tranfer learning after you have the required amount of data. It is linked here. Face recognition also is a classification task itself, where each human is a separate class. So, follow the instructions given in the blog , may be it would help you create your own powerful classifer.
Another suggestion would be , after creating a dataset , encode them properly. This encoding would help you preserve the features in an image and can help you train better networks. VLAD ,Fisher , Bag of Words are few encoding techniques. You can search few repositories online which have implemented these already on ORL database. Once you encode , train the network on the encodings , you will obviously see a better performance.
Even do check out , Siamese network here which is meant for this purpose I feel . Here they compare two images with similar characteristics on different networks and there by achieve better classification accuracies . Git repository is here.
Another standard approach would be using SVM , Random forests since the data is less. If you still prefer neural networks the above methods would serve you the purpose. If you intend to go with encodings , then I would suggest random forests , as it is highly preferrable in learning and flexible too.
Hopefully , this answer would help you proceed in the right direction of achieving things.
You might want to take a look at OpenFace, a Python and Torch implementantion of face recognition with deep neural networks: https://cmusatyalab.github.io/openface/
How to perform image classification from mahout? How to convert the image to a form which is accepted by mahout classification algorithms? Is the any starter code to start with? Please share me some starter tutorials. Is mahout good library for image classification?
There are two answers to your question:
The simple answer is that from a Mahout point of view classifying images is no different than classifying any other type of data. You find a suitable set of features to describe your data, and then: train, validate, test, and deploy.
The second answer is a bit more involved, and I'm going to summarize. In the case of images the step in which you compute a suitable set of features spans a whole research area (called computer vision). There are many methods: DHOG, direction of gradient, SURF, SIFT, etc. Depending on the images and what your expectations are, you may obtain reasonable results just using an existing method, or maybe not. It would be impossible to say without looking at your images and you telling us your objectives.