MASM dll memory allocation in multithreading application - memory

I asked how to dynamically allocate memory in MASM here but I got 2 more questions.
How can I allocate memory for bytes?
.data
tab DB ?
result DB ?
.code
invoke GetProcessHeap
; error here
mov tab, eax ; I cannot do this because of wrong sizes, AL and AH are equal 0
INVOKE HeapAlloc, tab, 0, <size>
invoke GetProcessHeap
mov result, eax ; same here
INVOKE HeapAlloc, result, 0, <size>
Second question, can I use this method of allocating memory in multithreading application or should I use GlobalAlloc?

HeapAlloc function accepts 3 arguments:
hHeap - handle of a heap object
flags - flags, about how the memory should be allocated
size - The size of the memory block you need
The function returns one double word in EAX that is a pointer to the allocated memory.
You don't need to call GetProcessHeap on every call to HeapAlloc.
The variables tab and result must be double word, because the pointers are double word long (eax)
The memory blocks pointed by these pointers can be accessed in whatever data size you need.
They are simply blocks of memory.
Windows heap functions are thread safe and you can use them in multi-thread applications.
How this all will look in assembly:
.data
tab dd ?
result dd ?
.code
invoke GetProcessHeap
mov ebx, eax ; the heap handle
invoke HeapAlloc, ebx, 0, <size>
mov tab, eax ; now tab contains the pointer to the first memory block
invoke HeapAlloc, ebx, 0, <size>
mov result, eax ; now result contains the pointer to the second block

Related

Inline asm (32) emulation of move (copy memory) command

I have two two-dimensional arrays with dynamic sizes (guess that's the proper wording). I copy the content of first one into the other using:
dest:=copy(src,0,4*x*y);
// src,dest:array of array of longint; x,y:longint;
// setlength(both arrays,x,y); //x and y are max 15 bit positive!
It works. However I'm unable to reproduce this in asm. I tried the following variations to no avail... Could someone enlighten me...
MOV ESI,src; MOV EDI,dest; MOV EBX,y; MOV EAX,x; MUL EBX;
PUSH DS; POP ES; MOV ECX,EAX; CLD; REP MOVSD;
Also tried with LEA (didn't expect that to work since it should fetch the pointer address not the array address), no workie, and tried with:
p1:=#src[0,0]; p2:=#dest[0,0]; //being no-type pointers
MOV ESI,p1; MOV EDI,p2... (the same asm)
Hints pls? Btw it's delphi 6. The error is, of course, access violation.
This is really a two-fold three-fold question.
What's the structure of a dynamic array.
Which instructions in asm will copy the array.
I'm throwing random assembler at the CPU, why doesn't it work?
Structure of a dynamic array
See: http://docwiki.embarcadero.com/RADStudio/Seattle/en/Internal_Data_Formats
To quote:
Dynamic Array Types
On the 32-bit platform, a dynamic-array variable occupies 4 bytes of memory (and 8 bytes on 64-bit) that contain a pointer to the dynamically allocated array. When the variable is empty (uninitialized) or holds a zero-length array, the pointer is nil and no dynamic memory is associated with the variable. For a nonempty array, the variable points to a dynamically allocated block of memory that contains the array in addition to a 32-bit (64-bit on Win64) length indicator and a 32-bit reference count. The table below shows the layout of a dynamic-array memory block.
Dynamic array memory layout (32-bit and 64-bit)
Offset 32-bit -8 -4 0
Offset 64-bit -12 -8 0
contents refcount count start of data
So the dynamic array variable is a pointer to the middle of the above structure.
How do I access this in asm
Let's assume the array holds records of type TMyRec
you'll need to run this code for every inner array in the outer array to do the deep copy. I leave this as an exercise for the reader. (you can do the other part in pascal).
type
TDynArr: array of TMyRec;
procedure SlowButBasicMove(const Source: TDynArr; var dest);
asm
//insert register pushes, see below.
mov esi,Source //esi = pointer to source data
mov edi,Dest //edi = pointer to dest
sub esi,8
mov ebx,[esi] //ebx = refcount (just in case)
mov ecx,[esi+4] //ecx = element count
mov edx,SizeOf(TMyRec) //anywhere from 1 to zillions
mul ecx,edx //==ecx=number of bytes in array.
//// now we can start moving
xor ebx,ebx //ebx =0
add eax,8 //eax = #data
#loop:
mov eax,[esi+ebx] //Get data from source
mov [edi+ebx],esi //copy it to dest
add ebx,4 //4 bytes at a time
cmp ebx,ecx //is ebx> number of bytes?
jle loop
//Done copying.
//insert register pops, see below
end;
That's the copy done, however in order for the system not to crash, you need to save and restore the non volatile registers (all but EAX, ECX, EDX), see: http://docwiki.embarcadero.com/RADStudio/Seattle/en/Program_Control
push ebx
push esi
push edi
--- insert code shown above
//restore non-volatile registers
pop edi
pop esi
pop ebx //note the restoring must happen in the reverse order of the push.
See the Jeff Dunteman's book assembly step by step if you're completely new to asm.
You will get access violations if:
you try to read from a wrong address.
you try to write to a wrong adress.
you read past the end of the array.
you write to memory you haven't claimed before using GetMem or whatever means.
if you write past the end of your buffer.
if you do not restore all non-volatile registers
Remember you're directly dealing with the CPU. Delphi will not assist you in any way.
Really fast code will use some form of SSE to move 16bytes per instruction in an unrolled loop, see the above mentioned fastcode for examples of optimized assembler.
Random assembler
In assembler you need to know exactly what you're what to do, how and what the CPU does.
Set a breakpoint and run your code. Press ctrl + alt + C and behold the CPU-debug window.
This will allow you to see the code Delphi generates.
You can single step through the code to see what the CPU does.
see: http://www.plantation-productions.com/Webster/index.html
For more reading.
Dynamic Arrays differ from Static Arrays, especially when it comes to multi-dimensionality.
Refer to this reference for internal formats.
The point is that an Array Of Array Of LongInt of dimensions X and Y (in this order!) is a pointer to an array of X pointers that point to an array of Y LongInts.
Since it seems, from your comments, that you have already allocated the space for all elements in Dest, I assume you want to do a Deep Copy.
Here a sample program, where the assembly as been made as simple as possible for the sake of clarity.
Program Test;
Var Src, Dest: Array Of Array Of LongInt;
X, Y, I, J: Integer;
Begin
X := 4;
Y := 2;
setLength(Src, X, Y);
setLength(Dest, X, Y);
For I := 0 To X-1 Do
For J := 0 To Y-1 Do
Src[I,J] := I*Y + J;
{$ASMMODE intel}
Asm
cld ;Be sure movsd increments the registers
mov esi, DWORD PTR [Src] ;Src pointer
mov edi, DWORD PTR [Dest] ;Dest pointer
mov ecx, DWORD PTR [X] ;Repeat for X times
;The number of elements in Src
#_copy:
push esi ;Save these for later
push edi
push ecx
mov ecx, DWORD PTR [Y] ;Repeat for Y times
;The number of element in a Src[i] array
mov edi, DWORD PTR [edi] ;Get the pointer to the Dest[i] array
mov esi, DWORD PTR [esi] ;Get the pointer to the Src[i] array
rep movsd ;Copy sub array
pop ecx ;Restore
pop edi
pop esi
add esi, 04h ;Go from Src[i] to Src[i+1]
add edi, 04h ;Go from Dest[i] to Dest[i+1]
loop #_copy
End;
For I := 0 To X-1 Do
Begin
WriteLn();
For J := 0 To Y-1 Do
Begin
Write(' ');
Write(Dest[I,J]);
End;
End;
End.
Note 1 This source code is intended to be compile with freepascal.
Donation of Spare Time(TM) for downloading and installing Delphi are welcome!
Note 2 This source code is for illustration purpose only, it is pretty obvious, it has already been stated above, but somehow not everybody got it.
If the OP wanted a fast way to copy the array, they should have stated so.
Note 3 I don't save the clobbered registers, this is bad practice, my bad; I forgot, as there are no subroutines, no optimizations and no reason for the compiler to pass data in the registers between the two fors.
This is left as an exercise to the reader.

assign memory location to register assembly

Let's say for example I have four specific memory addresses that each hold a 32-bit integer. How would you use assembly language to take the address and assign it register %eax?
Would it be movl 0x12AED567, %eax?
Yes, it is that simple. If you already have the addresses, just assign them to eax, I corrected your code a little :
mov 12AED567h, eax
But, if you want to get the addresses dynamically, you have to use lea instruction, next little program shows how :
.stack 100h
.data
my_number dd A01Ch
.code
;INITIALIZE DATA SEGMENT.
mov ax,#data
mov ds,ax
;GET THE MEMORY ADDRESS OF MY_NUMBER, NOT THE NUMBER ITSELF.
lea eax, my_number
;FINISH THE PROGRAM PROPERLY.
mov ax,4c00h
int 21h
Is this what you were looking for?
By the way, this is 8086 assembler with Intel's syntax.

Understanding calling convention and stack pointer

I want to understand how should I use local variables and how to pass arguments to function in x86. I read a lot of guides, and they all wrote that the first parameter should be at [ebp+8], but it isn't here :/ WHat am I missing? What am I not understanding correctly?
number byte "724.5289",0
.code
main PROC
mov ebx,offset number ;making so that [ebp] = '7' atm
push ebx ;I push it on stack so I can access it inside the function
call rewrite
main ENDP
rewrite PROC
push ebp ; push ebp so we can retrieve later
mov ebp, esp ; use esp memory to retrieve parameters and
sub esp, 8 ; allocate data for local variable
lea ebx, [ebp-8]
lea eax, [ebp+8] ; i think here ebp+8 should point to the same now to which ebx did
;before function, but it does not, writechar prints some garbage ascii character
call writechar
call crlf
rewrite ENDP
END main
You pass a pointer as argument to rewrite, and then pass its address on to writechar. That is you take the address twice. That is one too many :)
You want mov eax, [ebp+8] instead of lea eax, [ebp+8]
Also, you need to clean up the stack after yourself, which you don't do. Furthermore, make sure your assembler automatically emits a RET for the ENDP directive, otherwise you will be in trouble. You might want to write it out explicitly.

Create a pointer to a specific location

I need a pointer to location which is always the same. So, how can I create a pointer to.. lets say memory address 0x20 and store it in some way to be able to access it later.
Note:
I do NOT want to store the result, but the actual pointer to the memory address (since I want to point to the beginning of an array).
Thanks in advance.
--
I think I have fixed it now. I use bios interrupt 0x15 to get a memory map. Every interrupt returns 1 entry and you provide a pointer in es:di to a place where the bios can store it. I let the bios build it up from 050h:0h. I needed a pointer to 0x50:0x0 (0x500 linear) to use the map later. I still have to test, but I did the following:
mov ax, 0x50
mov es, ax
xor di, di
shl ax, 4
add ax, di
mov [mmr], ax
And mmr is declared this way:
mmr:
dw 0 ; pointer to the first entry
db 0 ;entry count
db 24 ; entry size
A pointer is just a memory address and a memory address is just a number. Assembly is not a typed language so there is no difference.
Also assembly doesn't really have variables. It has registers and memory locations, both of which can be used for storing values, including addresses/pointers.
So basically there are many variants of the x86 MOV instruction that can store a pointer such as 0x20 in an address or a register. You certainly want to think about whether you're doing 32-bit or 64-bit x86 assembly though (or 16-bit or even 8-bit for that matter).
x86:
suppose you have an array called list
mov bx, offset list
now, in the bx register you will have a pointer to the first memory location of list
to refer to the data in the memory location you would use [bx]
here's an brief example using intel syntax:
;declare list in .data
list dw 0123h
;move 01h from memory to ax register (16-bit)
mov bx, offset list
mov al, [bx] ; al = 23h
If you want to use the pointer later you can do this:
push bx then pop bx when you want to use it
or
mov point, bx ; declared in mmr

How Can I Get Around this EOutOfMemory Exception When Encoding a Very Large File?

I am using Delphi 2009 with Unicode strings.
I'm trying to Encode a very large file to convert it to Unicode:
var
Buffer: TBytes;
Value: string;
Value := Encoding.GetString(Buffer);
This works fine for a Buffer of 40 MB that gets doubled in size and returns Value as an 80 MB Unicode string.
When I try this with a 300 MB Buffer, it gives me an EOutOfMemory exception.
Well, that wasn't totally unexpected. But I decided to trace it through anyway.
It goes into the DynArraySetLength procedure in the System unit. In that procedure, it goes to the heap and calls ReallocMem. To my surprise, it successfully allocates 665,124,864 bytes!!!
But then towards the end of DynArraySetLength, it calls FillChar:
// Set the new memory to all zero bits
FillChar((PAnsiChar(p) + elSize * oldLength)^, elSize * (newLength - oldLength), 0);
You can see by the comment what that is supposed to do. There is not much to that routine, but that is the routine that causes the EOutOfMemory exception. Here is FillChar from the System unit:
procedure _FillChar(var Dest; count: Integer; Value: Char);
{$IFDEF PUREPASCAL}
var
I: Integer;
P: PAnsiChar;
begin
P := PAnsiChar(#Dest);
for I := count-1 downto 0 do
P[I] := Value;
end;
{$ELSE}
asm // Size = 153 Bytes
CMP EDX, 32
MOV CH, CL // Copy Value into both Bytes of CX
JL ##Small
MOV [EAX ], CX // Fill First 8 Bytes
MOV [EAX+2], CX
MOV [EAX+4], CX
MOV [EAX+6], CX
SUB EDX, 16
FLD QWORD PTR [EAX]
FST QWORD PTR [EAX+EDX] // Fill Last 16 Bytes
FST QWORD PTR [EAX+EDX+8]
MOV ECX, EAX
AND ECX, 7 // 8-Byte Align Writes
SUB ECX, 8
SUB EAX, ECX
ADD EDX, ECX
ADD EAX, EDX
NEG EDX
##Loop:
FST QWORD PTR [EAX+EDX] // Fill 16 Bytes per Loop
FST QWORD PTR [EAX+EDX+8]
ADD EDX, 16
JL ##Loop
FFREE ST(0)
FINCSTP
RET
NOP
NOP
NOP
##Small:
TEST EDX, EDX
JLE ##Done
MOV [EAX+EDX-1], CL // Fill Last Byte
AND EDX, -2 // No. of Words to Fill
NEG EDX
LEA EDX, [##SmallFill + 60 + EDX * 2]
JMP EDX
NOP // Align Jump Destinations
NOP
##SmallFill:
MOV [EAX+28], CX
MOV [EAX+26], CX
MOV [EAX+24], CX
MOV [EAX+22], CX
MOV [EAX+20], CX
MOV [EAX+18], CX
MOV [EAX+16], CX
MOV [EAX+14], CX
MOV [EAX+12], CX
MOV [EAX+10], CX
MOV [EAX+ 8], CX
MOV [EAX+ 6], CX
MOV [EAX+ 4], CX
MOV [EAX+ 2], CX
MOV [EAX ], CX
RET // DO NOT REMOVE - This is for Alignment
##Done:
end;
{$ENDIF}
So my memory was allocated, but it crashed trying to fill it with zeros. This doesn't make sense to me. As far as I'm concerned, the memory doesn't even need to be filled with zeros - and that is probably a time waster anyhow - since the Encoding statement is about to fill it anyway.
Can I somehow prevent Delphi from doing the memory fill?
Or is there some other way I can get Delphi to allocate this memory successfully for me?
My real goal is to do that Encoding statement for my very large file, so any solution that will allow this would be much appreciated.
Conclusion: See my comments on the answers.
This is a warning to be careful in debugging assembler code. Make sure you break on all the "RET" lines, since I missed the one in the middle of the FillChar routine and erroneously concluded that FillChar caused the problem. Thanks Mason, for pointing this out.
I will have to break the input into Chunks to handle the very large file.
FillChar isn't allocating any memory, so that's not your problem. Try tracing into it and placing breakpoints at the RET statements, and you'll see that the FillChar finishes. Whatever the problem is, it's probably in a later step.
Read a chunk from the file, encode and write to another file, repeat.
A wild guess: Could the problem be memory being overcommitted and when the FillChar actually accesses the memory it can't find a page to actually give you? I don't know if Windows will even overcommit memory, I do know that some OSes do--you don't find out about it until you actually try to make use of the memory.
If this is the case it could cause the blowup in FillChar.
Programs are great at looping. They loop tirelessly without complaining.
Allocating a huge amount of memory takes time. There will be many calls to the heap manager. Your OS won't even know if it has the amount of contiguous memory that you need ahead of time. Your OS says, yeah, I have 1 GB free. But as soon as you go to use it, your OS says, wait, you want all of it in one chunk? Let me make sure I have enough all in one place. If it doesn't you get the error.
If it does have the memory, well, there's still a lot of work for the heap manager in preparing the memory and marking it as used.
So, obviously, it makes some sense to allocate less memory and simply loop through it. This saves the computer from doing a lot of work that it will only have to undo when it's done. Why not have it do just a little bit of work in setting aside your memory, then just keep re-using it?
Stack memory is allocated much faster than heap memory. If you keep your memory usage small (under 1 MB, by default), the compiler may just use stack memory over heap memory, which will make your loops even faster. In addition, local variables that get allocated in the register are very fast.
There are factors such as hard drive cluster and cache sizes, CPU cache sizes, and things, that offer hints about the best chunk sizes. The key is to find a good number. I like to use 64 KB chunks.

Resources