Z3 Integer division not showing correct answer - z3

I'm writing some codes by calling Z3 to calculate division but I found the model result is not correct. Basically what I want to do is to the get value of a and b satisfying a/b == 1. So I manually wrote an input file like following to check whether it's my code's problem or Z3's.
(declare-const a Int)
(declare-const b Int)
(assert (= (div a b) 1))
(assert (not (= b 0)))
(check-sat)
(get-model)
Result from this in my machine is a =77 b = 39 instead of some equalized value of a and b. Is this a bug or did I do something wrong?

Using / instead of div will yield the desired behavior (rise4fun link: http://rise4fun.com/Z3/itdK ):
(declare-const a Int)
(declare-const b Int)
(assert (not (= b 0)))
(push)
(assert (= (div a b) 1)) ; gives a=2473,b=1237
(check-sat)
(get-model)
(pop)
(push)
(assert (= (/ a b) 1))
(check-sat)
(get-model) ; gives a=-1,b=-1
(pop)
However, there may be some confusion here, I didn't see / defined in the integer theory ( http://smtlib.cs.uiowa.edu/theories/Ints.smt2 ) only div (but it would appear to be assumed in the QF_NIA logic http://smtlib.cs.uiowa.edu/logics/QF_NIA.smt2 since / is mentioned to be excluded from QF_LIA http://smtlib.cs.uiowa.edu/logics/QF_LIA.smt2 ), so I was a little confused, or maybe it's related to the recent real/int typing issues brought up here: Why does 0 = 0.5?

Related

unknown when using a integer division in z3 smt2

I am trying to find a solution for the function penta(n) = (n * (3n -1)) / 2 and where penta (z) = penta (a) + penta(b) for all number positives. That works until the integer division (div) is part ofthe definition, but when it is added in the definition I either got a timeout or an unknown.
I would expect to get 8 , 7 , 4. Any idea on what I did wrongly?
(declare-const a Int)
(declare-const b Int)
(declare-const z Int)
(define-fun penta ((n Int)) Int (div (* (- (* 3 n ) 1) n) 2) )
(assert (= (penta z) (+ (penta a) (penta b)) ))
(assert (> a 1))
(assert (> b 1))
(assert (> z 1))
(check-sat)
(get-model)
I am using the version on the http://rise4fun.com/Z3 website and the version 4.1 (x64).
The main issue is that the problem uses integer multiplication between two non-numeric arguments. There are no decision procedures for general Diophantine problems so Z3 does a best effort, which does not favor model enumeration.
When you don't use integer division, Z3 will try a partial heuristic based on
converting the problem into finite domain bit-vectors to find models. It invokes
this heuristic by performing a syntactic check on the formulas. THe syntactic check fails when you use the operator (div .. 2).
You can encode (div x 2) so the heuristic picks up the problem
by introducing fresh variables and bounding them:
(declare-const penta_z Int)
(declare-const penta_a Int)
(declare-const penta_b Int)
(assert (or (= (* 2 penta_z) (penta z)) (= (+ 1 (* 2 penta_z)) (penta z))))
(assert (or (= (* 2 penta_a) (penta a)) (= (+ 1 (* 2 penta_a)) (penta a))))
(assert (or (= (* 2 penta_b) (penta b)) (= (+ 1 (* 2 penta_b)) (penta b))))
(assert (= penta_z (+ penta_a penta_b) ))
(assert (> a 1))
(assert (> b 1))
(assert (> z 1))
(assert (>= penta_z 0))
(assert (<= penta_z 100))
You can also directly encode your problem using bit-vectors although this starts getting error prone because you have to deal with how to handle overflows.

Why is Z3 not able to solve this instance without a seemingly trivial modification?

The original problem is:
(declare-const a Real)
(declare-const b Bool)
(declare-const c Int)
(assert (distinct a 0.))
(assert (= b (distinct (* a a) 0.)))
(assert (= c (ite b 1 0)))
(assert (not (distinct c 0)))
(check-sat)
The result is unknown.
But the last two constraints, taken together, are equivalent to (assert (= b false)), and after performing this rewrite by hand
(declare-const a Real)
(declare-const b Bool)
(declare-const c Int)
(assert (distinct a 0.))
(assert (= b (distinct (* a a) 0.)))
(assert (= b false))
;(assert (= c (ite b 1 0)))
;(assert (not (distinct c 0)))
(check-sat)
Z3 is now able to solve this instance (it is unsat).
Why can Z3 solve the second instance but not the first one, even though the first instance can be simplified to the second?
edit:
While locating the problem I found something very strange.
Z3 solves the following instance and returns "unsat":
(declare-fun a() Real)
(declare-fun b() Bool)
(declare-fun c() Int)
(assert (distinct a 0.0))
(assert (= b (distinct (* a a) 0.0)))
(assert (= b false))
;(assert (= c 0))
(check-sat)
But if I uncomment (assert (= c 0)), the solver returns "unknown", even though c=0 has nothing to do with the above assertions.
The problem here is that expressions like (* a a) are non-linear and Z3's default solver for non-linear problems gives up because it thinks it's too hard. Z3 does have another solver, but that one has very limited theory combination, i.e., you won't be able to use it for mixed Boolean, bit-vector, array, etc, problems, but only for arithmetic problems. It's easy to test by replacing the (check-sat) command with (check-sat-using qfnra-nlsat).

Z3 : strange behavior with non linear arithmetic

I am just starting to use Z3 (v4.4.0), and I wanted to try one of the tutorial examples :
(declare-const a Int)
(assert (> (* a a) 3))
(check-sat)
(get-model)
(echo "Z3 will fail in the next example...")
(declare-const b Real)
(declare-const c Real)
(assert (= (+ (* b b b) (* b c)) 3.0))
(check-sat)
As said, the second example fails with "unknown", and by increasing the verbose level (to 3) I think I understand why : some problem with the simplifying process, then the tactic fails.
In order to have a better idea of the problem (and a shorter output), I decided to remove the first part of the code to test only the failed part :
(echo "Z3 will fail in the next example...")
(declare-const b Real)
(declare-const c Real)
(assert (= (+ (* b b b) (* b c)) 3.0))
(check-sat)
But magically, now I get "sat". I am not sure about how Z3 chooses its tactic when it is about non linear arithmetic, but can the problem be from Z3 choosing a tactic for the first formula that is useless for the second one ?
Thanks in advance
The second encoding is not equivalent to the first, hence the different behavior. The second encoding does not include the constraint (assert (> (* a a) 3)), so Z3 can find it is satisfiable that b^3 + b*c = 3 for some choice of reals b and c. However, when it has the constraint that a^2 > 3 for some integer a, it fails to find it's satisfiable, even though the two assertions are independent from one another.
For this problem, it's essentially that Z3 by default will not use the nonlinear real arithmetic solver (which is complete) when it encounters reals mixed with integers. Here's an example of how to force it using qfnra-nlsat (rise4fun link: http://rise4fun.com/Z3/KDRP ):
(declare-const a Int)
;(assert (> (* a a) 3))
;(check-sat)
;(get-model)
(echo "Z3 will fail in the next example...")
(declare-const b Real)
(declare-const c Real)
(push)
(assert (and (> (* a a) 3) (= (+ (* b b b) (* b c)) 3.0)))
(check-sat)
(check-sat-using qfnra-nlsat) ; force using nonlinear solver for nonlinear real arithimetic (coerce integers to reals)
(get-model)
(pop)
(assert (= (+ (* b b b) (* b c)) 3.0))
(check-sat)
(get-model)
Likewise, if you just change (declare-const a Int) to (declare-const a Real), it will by default pick the correct solver that can handle this. So yes, in essence this has to do with what solver is getting picked, which is determined in part by the sorts of the underlying terms.
Related Q/A: Combining nonlinear Real with linear Int

Should Z3 prove monotonicity of <= (with respect to multiplication)?

This is the reduction of a more interesting problem, in which the missing property was (for positive k,M and N), that ((k % M) * N) < M*N. Below is an encoding of the simpler problem that a <= b ==> (a*c) <= (b*c). Such a query succeeds (we get unsat), but if the expression b is replaced by b+1 (as in the second query below) then we get unknown, which seems surprising. Is this the expected behaviour? Are there options to improve the handling of such inequalities? I tried with and without configuration options, and various versions of Z3, including the current unstable branch. Any tips would be much appreciated!
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(assert (> a 0))
(assert (> b 0))
(assert (> c 0))
(assert (<= a b))
(assert (not (<= (* a c) (* b c))))
(check-sat)
(assert (<= a (+ b 1)))
(assert (not (<= (* a c) (* (+ b 1) c))))
(check-sat)
This falls into nonlinear integer arithmetic (which has an undecidable decision problem, see, e.g., How does Z3 handle non-linear integer arithmetic? ), so it's actually not too surprising Z3 returns unknown for some examples, although I guess a bit surprising that it toggled between unsat and unknown for quite similar examples.
If it works for your application, you can try a type coercion: encode the constants as Real instead of Int. This will allow you to use Z3's complete solver for nonlinear real arithmetic and returns unsat with check-sat.
Alternatively, you can force Z3 to use the nonlinear solver even for the integer encoding with (check-sat-using qfnra-nlsat) as in the following based on your example (rise4fun link: http://rise4fun.com/Z3/87GW ):
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)
(assert (> a 0))
(assert (> b 0))
(assert (> c 0))
(assert (<= a b))
(assert (not (<= (* a c) (* b c))))
;(check-sat)
(check-sat-using qfnra-nlsat) ; unsat
(assert (<= a (+ b 1)))
(assert (not (<= (* a c) (* (+ b 1) c))))
; (check-sat)
(check-sat-using qfnra-nlsat) ; unsat
Some more questions and answers on similar subjects:
Combining nonlinear Real with linear Int
z3 fails with this system of equations
Using Z3Py online to prove that n^5 <= 5 ^n for n >= 5
Can z3 always give result when handling nonlinear real arithmetic
Z3 Theorem Prover: Pythagorean Theorem (Non-Linear Artithmetic)

Why operators '/' and 'div' in Z3 give different results?

I was trying to represent a real number with two integer numbers as using them as the numerator and the denominator of the real number. I wrote the following program:
(declare-const a Int)
(declare-const b Int)
(declare-const f Real)
(assert (= f (/ a b)))
(assert (= f 0.5))
(assert (> b 2))
(assert (> b a))
(check-sat)
(get-model)
The program returned SAT result as follows:
sat
(model
(define-fun f () Real
(/ 1.0 2.0))
(define-fun b () Int
4)
(define-fun a () Int
2)
)
However, if I write '(assert (= f (div a b)))' instead of '(assert (= f (/ a b)))', then the result is UNSAT. Why does not div return the same result?
Moreover, and the main concern for me, I did not find a way to use operator '/' in z3 .Net API. I can see only function MkDiv, which actually for operator 'div'. Is there a way so that I can apply operator '/' in the case of z3 .Net API? Thank you in advance.
Strictly speaking neither of these formulas is SMT-LIB2 compliant, because / is a function that takes two Real inputs and produces a Real output, whereas div is a function that takes two Int inputs and produces an Int (see SMT-LIB Theories). Z3 is more relaxed and automatically converts those objects. If we enable the option smtlib2_compliant=true then it will indeed report an error in both cases.
The reason for the div version being unsatisfiable is that there is indeed no solution where f is an integer according to (= f (/ a b)), but there is indeed no integer that satisfies (= f 0.5)

Resources