Training Algorithm to train this data - image-processing

I am working in MATLAB
PLots
NOTE : Here, the data plotted is the track of x - position of the pixel at position (i,j) of the FIRST frame throughout all the frames. It means that the pixel at (23,87) in the first frame has, at the end of the sequence, x-position as 35 (as visible in the plot).
Here is some typical plots of x_pos for some different values of (i,j) . (i,j) refers to a pixel at (i,j) in the first frame not throughout all frames
For (i,j) = (23 ,87)
(i,j) = (42 ,56)
(i,j) = (67 ,19)

So it's not about pixels in the image, but more about moving object, which makes the task much more tractable. Your data is indeed time series, thus time-aware algorithms are preferable. Markov models (in particular Markov chains and a bit more sophisticated Hidden Markov models) are classic examples of them.
However, your input is noisy because of camera instability. Thus, even better solution would be to use Kalman filter - model similar to HMMs, but with explicit notion of noise. It is widely used in robotics, navigation and similar areas to estimate current and predict future position of a vehicle based on inexact sensor data and historical information. Doesn't it sound similar to what you need?
I'm not big fun of Matlab, but it seems to have kalman function that implements mentioned filter.

A video is like a sequence of photos of real objects.
And real object, in front of a camera, can do only 2 different things:
they stand still
they move
If the pixel you are trying to predict are from a video, then you need to look ad how pixel are moving on screen, because object are moving on screen.
And this is how video codec compression works (H264, H265...) (clearly video compression algorithm are much more complex that just try to understand the direction of a pixel... :-) )
Here is some question/answer on stackoverflow that may help you:
Motion vectors calculation
Kalman filter in computer vision: the choice of Q and R noise covariances
How to do motion tracking of an object using video?
Vehicle segmentation and tracking

Related

accuracy of dense optical flow

Currently I am learning dense optical flow by myself. To understand it, I conduct one experiment. I produce one image using Matlab. One box with a given grays value is placed under one uniform background and the box is translated two pixels in x and y directions in another image. The two images are input into the implementation of the algorithm called TV-L1. The generated motion vector outer of the box is not zero. Is the reason that the gradient outer of the box is zero? Is the values filled in from the values with large gradient value?
In Horn and Schunck's paper, it reads
In parts of the image where the brightness gradient is zero, the velocity
estimates will simply be averages of the neighboring velocity estimates. There
is no local information to constrain the apparent velocity of motion of the
brightness pattern in these areas.
The progress of this filling-in phenomena is similar to the propagation effects
in the solution of the heat equation for a uniform flat plate, where the time rate of change of temperature is proportional to the Laplacian.
Is it not possible to obtain correct motion vectors for pixels with small gradients? Or the experiment is not practical. In practical applications, this doesn't happen.
Yes, in so called homogenous image regions with very small gradients no information where a motion can dervided from exists. That's why the motion from your rectangle is propagated outer the border. If you give your background a texture this effect will be less dominant. I know such problem when it comes to estimate the ego-motion of a car. Then the streat makes a lot of problems cause of here homogenoutiy.
Two pioneers in this field Lukas&Kanade (LK) and Horn&Schunch (HS) are developed methods for computing Optical Flow (OF). Both rely on brightness constancy assumption which feature location pixel values between two sequence frames not change. This constraint may be expressed as two equations: I(x+dx,y+dy,t+dt)=I(x,y,t) and ∂I/∂x dx+∂I/∂y dy+∂I/∂t dt=0 by using a Taylor series expansion I(x+dx,y+dy,t+dt) , we get (x+dx,y+dy,t+dt)=I(x,y,t)+∂I/∂x dx+∂I/∂y dy+∂I/∂t dt… letting ∂x/∂t=u and ∂y/∂t=v and combining these equations we get the OF constraint equation: ∂I/∂t=∂I/∂t u+∂I/∂t v . The OF equation has more than one solution, so the different techniques diverge here. LK equations are derived assuming that pixels in a neighborhood of each tracked feature move with the same velocity as the feature. In OpenCV, to catch large motions with a small window size (to keep the “same local velocity” assumption).

How to decorrelate accelerometer data

Is it possible to decorrelate accelerometer data in real-time? If so, how is it done?
Background:
My application is receiving (X,Y,Z) accelerometer data in real-time (sample rate is 6.75Hz). The sensor is moving in a periodic motion but the motion is not necessarily along only one axis. The 3 signals x(t), y(t) and z(t) are therefore slightly correlated and I would like to know if I can find a rotation matrix (in real time) which can be used to rotate the measured (x,y,z) into a new vector (x*,y*,z*) so that the entire motion is along the z-axis?
I would like to implement the algorithm in C.
Thanks.
What you're trying to do is generally called "principal component analysis". The Wikipedia article is pretty good:
https://en.wikipedia.org/wiki/Principal_component_analysis
For static data you generally use the eigenvectors of the covariance matrix as your new coordinate basis.
PCA in real time is doable, but not super easy. See, for example: http://www.bio-conferences.org/articles/bioconf/pdf/2011/01/bioconf_skills_00055.pdf
I'd like to first of all emphasize that Matt Timmermans' answer has done exactly what people are actually doing when classifying accelerometer data from clinical studies (a project I worked on).
Then: you're observing a sampled signal. In general, if you have a sensor that gives you samples at a rate of 6.75Hz, the highest frequency of a signal you can detect is 6.75Hz/2 = 3.375Hz. Everything that has a frequency higher than that will inherently be aliased back and look like it was something with a frequency f with 0<=f<3.375Hz. If you've not considered this, please go and read up on the Nyquist–Shannon sampling theorem. Especially: shield your sensors (however you do that, e.g. by employing dampeners) from all input above that limit, otherwise your measurements might be worth very little or even nothing. If your sensor does this internally (that's absolutely possible, there are enough accelerometers with analog low pass filters), this has been taken care of. However, document that characteristics of your sensor.
Now, your case is a little bit easier because you know pretty well that your whole observation is going to be periodic, and it's measured along three orthogonal axis.
In this case, just doing three discrete Fourier transforms at once, extracting the "strongest" spectral component over all three channels, and finding the phase of that spectral component (which is but the complex argument of that DFT bin) in the two others would give you something that you can map to a periodic movement around a specific axis in 3D space. If you want to, remove these value (set the bins to 0), and search for strongest component again etc.
Discrete cosine transforms can be done in staggering speed nowadays. with 6.75Hz, no PC in this world will ever get into trouble when you try this while you receive further samples. It's a hilariously low sampling rate.
Another, more elegant (read: you need less samples to compute this) would be using a parametric estimator; in your case, a direction-of-arrival sensor from the world of RF technology with multiple antennas would, as far as I can think, map directly to detection of rotational axis. The classical algorithms here are MUSIC and ESPRIT, and for your case (limited, known amount of oscillating parts), ESPRIT might be the better choice.

Accuracy in depth estimation - Stereo Vision

I am doing a research in stereo vision and I am interested in accuracy of depth estimation in this question. It depends of several factors like:
Proper stereo calibration (rotation, translation and distortion extraction),
image resolution,
camera and lens quality (the less distortion, proper color capturing),
matching features between two images.
Let's say we have a no low-cost cameras and lenses (no cheap webcams etc).
My question is, what is the accuracy of depth estimation we can achieve in this field?
Anyone knows a real stereo vision system that works with some accuracy?
Can we achieve 1 mm depth estimation accuracy?
My question also aims in systems implemented in opencv. What accuracy did you manage to achieve?
Q. Anyone knows a real stereo vision system that works with some accuracy? Can we achieve 1 mm depth estimation accuracy?
Yes, you definitely can achieve 1mm (and much better) depth estimation accuracy with a stereo rig (heck, you can do stereo recon with a pair of microscopes). Stereo-based industrial inspection systems with accuracies in the 0.1 mm range are in routine use, and have been since the early 1990's at least. To be clear, by "stereo-based" I mean a 3D reconstruction system using 2 or more geometrically separated sensors, where the 3D location of a point is inferred by triangulating matched images of the 3D point in the sensors. Such a system may use structured light projectors to help with the image matching, however, unlike a proper "structured light-based 3D reconstruction system", it does not rely on a calibrated geometry for the light projector itself.
However, most (likely, all) such stereo systems designed for high accuracy use either some form of structured lighting, or some prior information about the geometry of the reconstructed shapes (or a combination of both), in order to tightly constrain the matching of points to be triangulated. The reason is that, generally speaking, one can triangulate more accurately than they can match, so matching accuracy is the limiting factor for reconstruction accuracy.
One intuitive way to see why this is the case is to look at the simple form of the stereo reconstruction equation: z = f b / d. Here "f" (focal length) and "b" (baseline) summarize the properties of the rig, and they are estimated by calibration, whereas "d" (disparity) expresses the match of the two images of the same 3D point.
Now, crucially, the calibration parameters are "global" ones, and they are estimated based on many measurements taken over the field of view and depth range of interest. Therefore, assuming the calibration procedure is unbiased and that the system is approximately time-invariant, the errors in each of the measurements are averaged out in the parameter estimates. So it is possible, by taking lots of measurements, and by tightly controlling the rig optics, geometry and environment (including vibrations, temperature and humidity changes, etc), to estimate the calibration parameters very accurately, that is, with unbiased estimated values affected by uncertainty of the order of the sensor's resolution, or better, so that the effect of their residual inaccuracies can be neglected within a known volume of space where the rig operates.
However, disparities are point-wise estimates: one states that point p in left image matches (maybe) point q in right image, and any error in the disparity d = (q - p) appears in z scaled by f b. It's a one-shot thing. Worse, the estimation of disparity is, in all nontrivial cases, affected by the (a-priori unknown) geometry and surface properties of the object being analyzed, and by their interaction with the lighting. These conspire - through whatever matching algorithm one uses - to reduce the practical accuracy of reconstruction one can achieve. Structured lighting helps here because it reduces such matching uncertainty: the basic idea is to project sharp, well-focused edges on the object that can be found and matched (often, with subpixel accuracy) in the images. There is a plethora of structured light methods, so I won't go into any details here. But I note that this is an area where using color and carefully choosing the optics of the projector can help a lot.
So, what you can achieve in practice depends, as usual, on how much money you are willing to spend (better optics, lower-noise sensor, rigid materials and design for the rig's mechanics, controlled lighting), and on how well you understand and can constrain your particular reconstruction problem.
I would add that using color is a bad idea even with expensive cameras - just use the gradient of gray intensity. Some producers of high-end stereo cameras (for example Point Grey) used to rely on color and then switched to grey. Also consider a bias and a variance as two components of a stereo matching error. This is important since using a correlation stereo, for example, with a large correlation window would average depth (i.e. model the world as a bunch of fronto-parallel patches) and reduce the bias while increasing the variance and vice versa. So there is always a trade-off.
More than the factors you mentioned above, the accuracy of your stereo will depend on the specifics of the algorithm. It is up to an algorithm to validate depth (important step after stereo estimation) and gracefully patch the holes in textureless areas. For example, consider back-and-forth validation (matching R to L should produce the same candidates as matching L to R), blob noise removal (non Gaussian noise typical for stereo matching removed with connected component algorithm), texture validation (invalidate depth in areas with weak texture), uniqueness validation (having a uni-modal matching score without second and third strong candidates. This is typically a short cut to back-and-forth validation), etc. The accuracy will also depend on sensor noise and sensor's dynamic range.
Finally you have to ask your question about accuracy as a function of depth since d=f*B/z, where B is a baseline between cameras, f is focal length in pixels and z is the distance along optical axis. Thus there is a strong dependence of accuracy on the baseline and distance.
Kinect will provide 1mm accuracy (bias) with quite large variance up to 1m or so. Then it sharply goes down. Kinect would have a dead zone up to 50cm since there is no sufficient overlap of two cameras at a close distance. And yes - Kinect is a stereo camera where one of the cameras is simulated by an IR projector.
I am sure with probabilistic stereo such as Belief Propagation on Markov Random Fields one can achieve a higher accuracy. But those methods assume some strong priors about smoothness of object surfaces or particular surface orientation. See this for example, page 14.
If you wan't to know a bit more about accuracy of the approaches take a look at this site, although is no longer very active the results are pretty much state of the art. Take into account that a couple of the papers presented there went to create companies. What do you mean with real stereo vision system? If you mean commercial there aren't many, most of the commercial reconstruction systems work with structured light or directly scanners. This is because (you missed one important factor in your list), the texture is a key factor for accuracy (or even before that correctness); a white wall cannot be reconstructed by a stereo system unless texture or structured light is added. Nevertheless, in my own experience, systems that involve variational matching can be very accurate (subpixel accuracy in image space) which is generally not achieved by probabilistic approaches. One last remark, the distance between cameras is also important for accuracy: very close cameras will find a lot of correct matches and quickly but the accuracy will be low, more distant cameras will find less matches, will probably take longer but the results could be more accurate; there is an optimal conic region defined in many books.
After all this blabla, I can tell you that using opencv one of the best things you can do is do an initial cameras calibration, use Brox's optical flow to find find matches and reconstruct.

Vehicle segmentation and tracking

I've been working on a project for some time, to detect and track (moving) vehicles in video captured from UAV's, currently I am using an SVM trained on bag-of-feature representations of local features extracted from vehicle and background images. I am then using a sliding window detection approach to try and localise vehicles in the images, which I would then like to track. The problem is that this approach is far to slow and my detector isn't as reliable as I would like so I'm getting quite a few false positives.
So I have been considering attempting to segment the cars from the background to find the approximate position so to reduce the search space before applying my classifier, but I am not sure how to go about this, and was hoping someone could help?
Additionally, I have been reading about motion segmentation with layers, using optical flow to segment the frame by flow model, does anyone have any experience with this method, if so could you offer some input to as whether you think this method would be applicable for my problem.
Below is two frames from a sample video
frame 0:
frame 5:
Assumimg your cars are moving, you could try to estimate the ground plane (road).
You may get a descent ground plane estimate by extracting features (SURF rather than SIFT, for speed), matching them over frame pairs, and solving for a homography using RANSAC, since plane in 3d moves according to a homography between two camera frames.
Once you have your ground plane you can identify the cars by looking at clusters of pixels that don't move according to the estimated homography.
A more sophisticated approach would be to do Structure from Motion on the terrain. This only presupposes that it is rigid, and not that it it planar.
Update
I was wondering if you could expand on how you would go about looking for clusters of pixels that don't move according to the estimated homography?
Sure. Say I and K are two video frames and H is the homography mapping features in I to features in K. First you warp I onto K according to H, i.e. you compute the warped image Iw as Iw( [x y]' )=I( inv(H)[x y]' ) (roughly Matlab notation). Then you look at the squared or absolute difference image Diff=(Iw-K)*(Iw-K). Image content that moves according to the homography H should give small differences (assuming constant illumination and exposure between the images). Image content that violates H such as moving cars should stand out.
For clustering high-error pixel groups in Diff I would start with simple thresholding ("every pixel difference in Diff larger than X is relevant", maybe using an adaptive threshold). The thresholded image can be cleaned up with morphological operations (dilation, erosion) and clustered with connected components. This may be too simplistic, but its easy to implement for a first try, and it should be fast. For something more fancy look at Clustering in Wikipedia. A 2D Gaussian Mixture Model may be interesting; when you initialize it with the detection result from the previous frame it should be pretty fast.
I did a little experiment with the two frames you provided, and I have to say I am somewhat surprised myself how well it works. :-) Left image: Difference (color coded) between the two frames you posted. Right image: Difference between the frames after matching them with a homography. The remaining differences clearly are the moving cars, and they are sufficiently strong for simple thresholding.
Thinking of the approach you currently use, it may be intersting combining it with my proposal:
You could try to learn and classify the cars in the difference image D instead of the original image. This would amount to learning what a car motion pattern looks like rather than what a car looks like, which could be more reliable.
You could get rid of the expensive window search and run the classifier only on regions of D with sufficiently high value.
Some additional remarks:
In theory, the cars should even stand out if they are not moving since they are not flat, but given your distance to the scene and camera resolution this effect may be too subtle.
You can replace the feature extraction / matching part of my proposal with Optical Flow, if you like. This amounts to identifying flow vectors that "stick out" from a consistent frame-to-frame motion of the ground. It may be prone to outliers in the optical flow, however. You can also try to get the homography from the flow vectors.
This is important: Regardless of which method you use, once you have found cars in one frame you should use this information to robustify your search of these cars in consecutive frame, giving a higher likelyhood to detections close to the old ones (Kalman filter, etc). That's what tracking is all about!
If the number of cars in your field of view always remain the same but move around then you can use optical flow...it will give you good results against a still background...if the number of cars are changing then you need to call goodFeaturestoTrack function in OpenCV after certain number of frames and again track the cars using optical flow.
You can use background modelling to model the background and hence the cars are always your foreground.The simplest example is frame differentiation...subtract the previous frame current frame. diff(x,y,k) = I(x,y,k) - I(x,y,k-1) .As your cars are moving in each frame you will get their position..
Both the process will work fine since you have a still background I presume..check this link to find what Optical flow can do.

Detection of Blur in Images/Video sequences

I had asked this on photo stackexchange but thought it might be relevant here as well, since I want to implement this programatically in my implementation.
I am trying to implement a blur detection algorithm for my imaging pipeline. The blur that I want to detect is both -
1) Camera Shake: Pictures captured using hand which moves/shakes when shutter speed is less.
2) Lens focussing errors - (Depth of Field) issues, like focussing on a incorrect object causing some blur.
3) Motion blur: Fast moving objects in the scene, captured using a not high enough shutter speed. E.g. A moving car a night might show a trail of its headlight/tail light in the image as a blur.
How can one detect this blur and quantify it in some way to make some decision based on that computed 'blur metric'?
What is the theory behind blur detection?
I am looking of good reading material using which I can implement some algorithm for this in C/Matlab.
thank you.
-AD.
Motion blur and camera shake are kind of the same thing when you think about the cause: relative motion of the camera and the object. You mention slow shutter speed -- it is a culprit in both cases.
Focus misses are subjective as they depend on the intent on the photographer. Without knowing what the photographer wanted to focus on, it's impossible to achieve this. And even if you do know what you wanted to focus on, it still wouldn't be trivial.
With that dose of realism aside, let me reassure you that blur detection is actually a very active research field, and there are already a few metrics that you can try out on your images. Here are some that I've used recently:
Edge width. Basically, perform edge detection on your image (using Canny or otherwise) and then measure the width of the edges. Blurry images will have wider edges that are more spread out. Sharper images will have thinner edges. Google for "A no-reference perceptual blur metric" by Marziliano -- it's a famous paper that describes this approach well enough for a full implementation. If you're dealing with motion blur, then the edges will be blurred (wide) in the direction of the motion.
Presence of fine detail. Have a look at my answer to this question (the edited part).
Frequency domain approaches. Taking the histogram of the DCT coefficients of the image (assuming you're working with JPEG) would give you an idea of how much fine detail the image has. This is how you grab the DCT coefficients from a JPEG file directly. If the count for the non-DC terms is low, it is likely that the image is blurry. This is the simplest way -- there are more sophisticated approaches in the frequency domain.
There are more, but I feel that that should be enough to get you started. If you require further info on either of those points, fire up Google Scholar and look around. In particular, check out the references of Marziliano's paper to get an idea about what has been tried in the past.
There is a great paper called : "analysis of focus measure operators for shape-from-focus" (https://www.researchgate.net/publication/234073157_Analysis_of_focus_measure_operators_in_shape-from-focus) , which does a comparison about 30 different techniques.
Out of all the different techniques, the "Laplacian" based methods seem to have the best performance. Most image processing programs like : MATLAB or OPENCV have already implemented this method . Below is an example using OpenCV : http://www.pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
One important point to note here is that an image can have some blurry areas and some sharp areas. For example, if an image contains portrait photography, the image in the foreground is sharp whereas the background is blurry. In sports photography, the object in focus is sharp and the background usually has motion blur. One way to detect such a spatially varying blur in an image is to run a frequency domain analysis at every location in the image. One of the papers which addresses this topic is "Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes" (cvpr2017).
the authors look at multi resolution DCT coefficients at every pixel. These DCT coefficients are divided into low, medium, and high frequency bands, out of which only the high frequency coefficients are selected.
The DCT coefficients are then fused together and sorted to form the multiscale-fused and sorted high-frequency transform coefficients
A subset of these coefficients are selected. the number of selected coefficients is a tunable parameter which is application specific.
The selected subset of coefficients are then sent through a max pooling block to retain the highest activation within all the scales. This gives the blur map as the output, which is then sent through a post processing step to refine the map.
This blur map can be used to quantify the sharpness in various regions of the image. In order to get a single global metric to quantify the bluriness of the entire image, the mean of this blur map or the histogram of this blur map can be used
Here are some examples results on how the algorithm performs:
The sharp regions in the image have a high intensity in the blur_map, whereas blurry regions have a low intensity.
The github link to the project is: https://github.com/Utkarsh-Deshmukh/Spatially-Varying-Blur-Detection-python
The python implementation of this algorithm can be found on pypi which can easily be installed as shown below:
pip install blur_detector
A sample code snippet to generate the blur map is as follows:
import blur_detector
import cv2
if __name__ == '__main__':
img = cv2.imread('image_name', 0)
blur_map = blur_detector.detectBlur(img, downsampling_factor=4, num_scales=4, scale_start=2, num_iterations_RF_filter=3)
cv2.imshow('ori_img', img)
cv2.imshow('blur_map', blur_map)
cv2.waitKey(0)
For detecting blurry images, you can tweak the approach and add "Region of Interest estimation".
In this github link: https://github.com/Utkarsh-Deshmukh/Blurry-Image-Detector , I have used local entropy filters to estimate a region of interest. In this ROI, I then use DCT coefficients as feature extractors and train a simple multi-layer perceptron. On testing this approach on 20000 images in the "BSD-B" dataset (http://cg.postech.ac.kr/research/realblur/) I got an average accuracy of 94%
Just to add on the focussing errors, these may be detected by comparing the psf of the captured blurry images (wider) with reference ones (sharper). Deconvolution techniques may help correcting them but leaving artificial errors (shadows, rippling, ...). A light field camera can help refocusing to any depth planes since it captures the angular information besides the traditional spatial ones of the scene.

Resources