What format is this string in? [closed] - ios

This question is unlikely to help any future visitors; it is only relevant to a small geographic area, a specific moment in time, or an extraordinarily narrow situation that is not generally applicable to the worldwide audience of the internet. For help making this question more broadly applicable, visit the help center.
Closed 10 years ago.
I'm trying to figure out what data an iPhone game app is sending. It uses the GKTurnBasedMatch framework.
I've captured some of its packets and I found a promising XML message with this string as the value for a game-state key:
eyJHYW1lR3VpZCI6ImJkMTIwYWZiLTNjNjQtNGU3Ni05MzdhLWZlMTYyOGUxZGI1NyIsIkdhbWVEYXRhIjoiQWdFVXdxbHA4aUxSdlZ3UWZXK1d0T0hpbkZXalVheHQ1MXlsM01MQ04ydytMZ2Q5aVNPeGJSRnZ2dzZnMnVTcjJSZ1hUY3lxYzlZWHVmZFZGZTFndVM0QjEwZXZcLzRCRXBPNGZQUHFlR0RadDk4WkxKdG83SXZQQkFQVGcyNmh0ZmRMTFB2cm1uM0o0b3NFWmtcL1lkeXNYeDBnMmtMNUdVZWtYXC9US24rYURVTlpJbzk4MGZLTkRwVnU0ays5cDdPOER3RVRCUU8rOVZhdEhPSUh1eDBFR0dUaUtwVGRSS0tEWUFkb3c1bmtnZ2FOakwrYVU4Q1FudXJIajZcLzNXSzZPbzNvVVpRR3o4VU50RFB2QzFvYm90TTNnRHBjdDNaZ250WDZlWkxweDVvc3VpUnN4OFNWcWFpR29hTTg5VE8xeG84ZXRXb0hXQXFmYU13eG5mblJ2TFprVTVxRkZnTGljS0U5dUZDZUg5UCs0cDlXMFFQejg5TXlzaGF5dFdDdFJxOEZHYkg1c3dJeW85UmZ2Q1Y0V1daTE9CWDF1OWVZTXZGVHFkMStmMFwvdm5VSVJRUFp0NlNGY3pHaXhPWGtGaWpPeXNPMEtHT2F2M2JWK1F4UXEzSG95SUwrVjVBQTIyRmExWjB0Mjhub2F4ME1vUUF2T2ZaejZWSlwvY0dyNFNneWZQeCtEdnVVQU9lOFJycDNrK3YxZTlhXC94Vk43WGdKRG1vNzRBUkxcL1wveU5hMGx1MWxqRXN2NnVrVUJcLzZRdkJnZGdsSG1tOGhQa0VLTzJ0M0NveXBHM0FBaEUzVlVHcmNpbm9mTE11OTI0MDFpWmFXWUV5MTJOXC9XOXFKcFNtR2lsaXVYVmNITnA5Wm15U1hIQ05lOEVwNVhqSk1jZ3h4ZnRFRkEwaXlEQkM3b2tJVjdXNmc4ZHZDNGdNcVFnMXNSRjlXTGJxU0l3S3BKM1BGYm51QlZNb2xodDQzSTJLXC9tU2JWRU1VRnhyME5mNitDZnlNYm5PZ2ZOMG9wblFXXC9rNm5RQitkXC8yeVVWY2poVXBxb0RpR05IRFIydldcL09CZXJiQ3JUSmtZK3V3aFZWcDVSNlBqWHdPVXRNek1BenduU0tETGFNK1BIMitvZTY1WXRVZmNRM0p6Wkc5bUNpNk50ZmhZWUNscWtJcHpsNVYrRE1MUXdLR294eXhJVnhcL1F3U094Q3lvTjNGdm90RlhBU0ZEWXVGb1R0ckdHSHlrWlFIYzljYks4K2REUXAycVhHK3VoYSt5VEhseElRSjJUcTNmMU5zY3cyQXlcL3dncitVekdEV0lseVdiYWQzWXNTTVhOVUJucFNpaHYydkxEbEF3MFArUnVsOTMyUzFMeEttSzRKWnRvY08zVlp0UXlpUUpIcklhNVdzUTRvb3JnVHQrc0ZFemxqQytOeXRGQ3h1dlpcL042ZUVTUFROTDZsMFJHZnk4c0RuSnBiR1VvS0lsXC9zMFdnTFRxelp6cXY5bXJGTkpcL2c2WXYwNTNzc1BhSWJkbW1JVG4rcnpmeUhwTnJrVkFKN0NPdGFxd2VnbmRnN3FuMDhidGJjMHF5Mm5rZU5wVkRtejBINGY0eFVXMDROSjYrR0R3QnNoTVNqNUV4YVJVWXBza3F0XC9mQmZcL2t0cGFkTk9nWkt2dmNoOGJUTXBcL2J2TTVtdnptc0NOUUxsalM1cEZwRFI0RDVHQzk3RzZzMnMxNExiNE1Sd05oaXpKMCs1cEc0M1BId29tK1Vna1ZTcG9Td083Qk9HeGQ4VVhGZENCV0hmbmhpanY1SEptajJLcm84N3Fhc0tNT00xS3NOWEtEREduXC9DQmRJUDBqVFJ4a0p5MjFUYUswT2ptYktFbU43RHNWRjF0U09DTU1rU2FXRlJqNWNVZ3lzVzhSbzNvcnRzOEltQW1HWWVoVzNCTHZYbUdVcUljdXNHSUxVbzhuOW5vK2tjQnlSSzhIU3poVXlPclpBQndPcW5wd1FzZ084YVBjc2hyQW1zZWtqSmpLb2N1NkMxUEluWGhqMzJ4aWhhTVJnVGxwNFVnTjlkNXA2WGVwZ1A4SkZLOURmdjUrRDN2RnBsRFJvZnpLTmVucEVsV3QyM2xKTGg1NzlLUmtCWnpBdlJwOSthWDVEdHh1bDR4NnhZR2pBR04xUUk0Q2hNbXl3SVR3clJqQUNwSHlkK0tsQmNMQWpUNmNZZFhsUldkTW52SEpyV1RFMVUzaTZISkRZakNlbXhGMVg1MWVqR1BVSzZLOE9UKzJzYzNcL2tmQmJjM0I4VUJZMitJSWNGYTd1YWVFMFc1RWJDZnA0c004UzVWZ1dUM3VsdUI2aUJOQ2UyRFJrYnF2VU9IWmVJbVNmODd5VktnSysxMW5OVUNXNmtnMjhVTTdIdysyU1E3T1NXeEI3dXV3Q2tKejc0M0I4cVBlOVJQejJxWGxodGdMTmZTSGpCaWJXSytVVTVcL0UzU1l1dDIrdnJLSDNWS0NvMTNTbCtEQlBMVGFhSHhkUEhLR0pQdEdUMVZobERnMmRlTGlLZVkwaEdPMGhzSUFGWTVEYVJuU0xwWWd5Qmw1cEI3Mmt6MVJmXC9IWGhvRkE4bU04aHhLY3JSKzM4eXZ6YmwzeXZmRzdOTzFFeitSamF3ZVBaT1J1VWRBYkVIMmdUK01Gb3BPSStZR1lYV1BGVjhLVG1JbW5wYzBlNGo3NiszT3c0eGFhQ3dONGd0c3JSbnNiNEdpU2I2TVRoNDJwR2JpOEtMbk53bXJTRVM2NCtWMFoyVkQ1bFwvUUNIV1o2QnppVFhsdUZhYUdCMGVBeUxPWlQzMXF6bTZGMDBhNnVPNEY4M0c4dWUwa1poT2RBNlRIdXU0TVpDVHF0VEpkM3p2WmU4bTdtaG5SNlFhM2tOd3BNZW9lcjY4ZGxiaGRUYmtpVFNYODh1Z3VvNVlcL1IyemRhQ0NYTERuZUFjZWRmNmlDWGFuXC9ONFZsekRhYVRLdUxoY2hnM2NFMllFWGtieGxSN29INWN1Y3hWUnhQTG1VZEo1TFFrdVwvZ0Nwc3pGVExTUUJnVUdkQjdzams4cE1hZUthOGl4K0RXYWVoTjE1ZFBVd1c3NEJVWG5ucTMxdG1NdnJ6M2xUTXF5OGF6NFM5ajRDd1pubjI0QzR5XC9RNTI1emN3djM2RFJyMVpcL2ZyTWl1Zk9tVGNSSjFlYzJ0XC85NU1HWDZITERqUW5waytoajBEaG5xNGw5WHAyblRtZElYUktMM2p1bTNJZFwva21EbkkwTFptQzBTRStsU1doQWI4aXFIaXl2MWxQTGJpYkkrUm15TlVNdXpcL0lxMStiMCtiTlNVRXpYTXg1MDJHK2hJcHhyNWFYQ0ZOYktTWEpXZDlIdGpHNHBFQU94RENQc1BMTjF4bjhkZWZLQkdkcytuV3ZBa3EyZXlOM2NxM0sxU3ByaHZLWXd4enJcL0FEVTlYTXMyVDVkS3F1bzdlclBHaHp2NU5BTUVSUWNnWGNkRjRaZ2NOZ3pmYTBLOGd3aEpsOGR4ZU02cjl5VEROcWQ0YkpQNEgyXC8rczI2eXlwVkRnaUhQVWRxMGxUanFlN1NtbTREWG41VWthV0JHSnBJRDdNWDk5d29hN2N0YnNhOXM4OGVFSWJ0YmRHWDAzMkRxS1wvcUZrSXdRU0I4RXZhTzNJcVlnQ0I5YXBSQlp4ck5mVk9kMGlUNVNYckFseFF6QW1Jd0dxaGtRZVpkVm92M3BJREk4QkxpdCs4eVNQUGMyejQrTjJvM3F2VlJneVk4WmY5clNtdHM1M0tURmxNVzZTM0tIQ2pDc3FWN1poVkZGNDdwN0F4NWV5R05rVFFWUFROZ2xlRWNyeEVXRWszYUQ1SzlLTjM0UEQ1dGd6eDd5dGM0TUdvb0hmTEpWTDQ1ekJYYTJCVXdKbHVZUGltaXM1TXh6ZUt6NzNHKytJSzllV3haMERoSkV2bnFubUlES29wS1B0S0orbFpYMlFNcEtXNVBObjdLc0FiN2hjQzFrb1oxQjhrcnhvQnFVejZZNnVBYTY5akpjUmhOZlNNbG8rMzA3MG5hbFpST1p3NHRTVVpJclwvYXNUc25nVWZ0XC9JRUNcL3FtSTRvZ0NjNGxLZ0VjXC94K0tzV1p3K0g3Qk4zODVGXC9qaCtVcG9sTGVEU3lTV3BLbXY1Mll1eDRpOHlkaVNNcFc2Y0RNNmFrT2ZUZWhkclNRTlAxd3BnR0NoZGM5NHloWmx2NmZJYVN5T3dFQXRvc3FQQ1RKTmg1UFI4ZVBram5FakR6dXlNRmhcL2pYSEhiWEpFdWkyd2kzSmZWYlNYWWpyTDlNeUd1SFYxXC9YSnZrZ0ZOU1FHZ2RSWllCSjhIckhmWGdraWt6WEFJNzVLc2twYzlud2RzTFNNRHhpVitVRlwvVFo3R2REMFQ2QkxKSHlCSitUTGdtZDZOZUZtR0cyRVZjb0dBRjY0ZThkOUdmS3BcL1pwRlh5N0dnamtRZjNrR0c1MjdlV3FiUkJhNWtldW0xUzd0RE00M0NBRlBqT0hEbnVYang5RUVsanJXbTErck1mWng4bWtzV3h4cmVFczBXUXBPaHZiT1JIcjZcL2RVSGdKY1l3SFk0bkQ3UWdGdlJpTXdndnRtR25tMXB6QzVZU3U3TEt2YWVEVGtyakZMVGhaTFBDZFQreStJRnNsXC9RdzRTaFJlSGN2bWdRT2NBSnlJVnlhNnY0T2RUSEwwSk95Z3F2SGthdWdQeFFjekEwRDV4bXl2XC9zOHhWb2F2M2xjOFwvRjhvWm5JMlB0b2xzMjdESVBsTkhOMkt2aXp1NDdKSmh2VW9WT1lqWlV3bEZ2RzUrbXB2c0hIckhld21zM1FLRVwvN3V1RklxOXlid2J6NFwvUzVrdE5XQ29OUnh3RDNhMVhvSmlSSjdUcVh2V2M1U1ZuUVJ5M3h3Z0lvV0VtbFNaTjREU3JidHFOVzh2UFFpYUV0SlF0azRKeFBvNVwvajlXblFiUjJMeTFJbWRSVldXNEZERG02WGtkSEx3b05KZ0ZIYXQ1RUh1NDJRZGJjcytXclFTTExBdmVsZGJkWHdSMkJHR1FCa2JidkVtTTBqMHhXR2lcL2hKVFg3aFFxWXNiWkpnR3dXeHVheTd4dE00dWw1Q1NWQ1ArZU9NdDJPcHEzQVU0aEJLSnJnRUN3R1FDM3lhM3ZlVENXZnk0M2lEQ3N2dTlcL0Qyanh1bGdRR1pJWTZObDU4c3A4SVFlaGxDTk5scnNQN3haZ0ZxVVZxS3ViblF0R2tLeENvM01nSUtCSVQxQzB6OHpDd3ZHTFNKelBCaEFYOWNENU10djg0bGZXdmpRSFczNWdpNHJmdkc4cUZ3SGw4RlVjWjdcL05udk15U2l3K0pZRlU2S3pMMFVXdnRaVTZrMWtVWmZnaWNNSDdUWlRkTWhodU9ZTzVrMDlSbDNrbHVYNGdzV3hSUTRNVWtkMTJsN1FiajlnUGVhejRTOTRwMXdzNUhqQ1lhUVZEMzhuc1dqb1VsXC9xQVVlWDMrR2FcL1RzRXFkN1NocFYxT3dYOTRzaDYzb3lKb1gzXC9tZmlxRGlMZUdMSEhtQWhqdXZwNFJYUlwvTmJheU01WUdhUzFNaURMYzgrRzczZEtwa1JtM2xTNDRGT0lISHdcL1wvSjlvbXFJaXV2YkM0aGxHTUVcL3lPMW82NVFCOXlPSDEyV0VFSktCbGFDQlFUZzRmTjlMRlFxMU9jVjJkRkd6UDdTZ2hHb0VUMHRTTjhkc2toVWhnUUJvaWpicGlxVWRyNEprOU8rbkI0UXZcL2xFM29BNFwvWG8rblU1eDBFamgzRWFoampSQ1ZzU3RHUzdqTzVuUE9ua2hCUjROV3Q0Sm9Ca2dOK0lMOHJDb2xUekVXUUFrVFkyTzBoQjB1bldCaHVUR0JHbk9wUHl3amV6ckZ5Wlg3M1hcL3NISGpRYXBYdndSZGJKMm5Wdm05bVc0amZ1b2VlQnpsdVE4Z0NXU1FwOW1TK2VrUHg5ZVNwM2ZhMUFTeVl1V2V3TU5SM3ViUENIUU0yTkw2aFIrdmRvWCtoY2h1dzN2UnpLaDhBZzhaXC9HbEI5cENWYUpIK1QzaHpUMHowSTdJT1dxXC9PWG9JNEIyV1hPa1lMM0ZNRm5FUk9cL2I2bzA4Q0puWU52S1h0YW9lTEtBVnFEWUFmdFFKSTlmV0ZkazZCTDg0c2xXR2F4bVZ1cDF3Vk50NDBxV1wveVI5dmJnSHFrbVwvWmtcL3loTm9cL1ZLaWR6M2JiWVNHcVhoQzJzajFMTGpJS29WZDNKMHV5TDFJZjViZVNYM28yQkhSYmkwWmZMbnR3enNubGFQZmF3MHQ5bkZYbWdMRUVVaDBnR1wvZmk0RU9wQ2hDNDNUNFc0K2hLZDQzSTc2ekQzQzhZOTdlK01icnloekdJWGF4Qmd4NUdPR1FnWlZPNFdlU241VG40WXMyQ01vSkpnVEpudmgwUVE3WTk2MnBwSDF4Y0FjdGdQTG51eFhwVzQ5QnR2MG5NNUljZkwxZ0N5RUNvblo1R2ZuQW9FeUk5amM3UzFXMjF0RUpsdEZ5d3lzVmVBQktxamZjeGlBR0lhNU9rOTJXUkFcL2kzb2V6aHl6NHBvcGNlelcybysrTUgzSUF4RmVOV1JnVm1hXC9FMDRWK05JTlE1RU4rTXpSd1lGVjdzREVJaDlkanBuenJ5cEZycE1IclBlXC9qOGFuYkc4aE1tajZFN0JoN3dvdENTZno0aDhGekxhMTF6am9keUVtNG5SSThLZXZTOHpkYzdqNDFKZ0xhTmRaV1VvdzJ6RnpPY3FiWUNVZDlxaEh1MXQ3eWNlNWR4dkJTMk0wZVZ0eEw4cGRUZnFYTFhNb0diSldWYlIyWWREVTFtRzdlaGtcLzVFVStibUZRWExPNWpnUWp4OVwvRHhzK2EwZFJYRnE4WHlvVEdQd1FTaVRZa3RuVGE4NzhIQlBBN2Y4R1JkUVRlaU8wb08xNGVNWHBNYlZ4RHZcL0lBZnU1QTlFZ1FTQjNjS0xNeEFrSVkyb2UyK01INEdkQkhadDQ4Y1NXRHpLdUtqREFHa3MwMTZHVWFYMHJ5VnhoejQ1blFaa0gxNmFlTGFDS0F1MUs5VVwveFdRMDB6eDBSdWFLOCtCK1wvKzFnUHkwVHh5VkhtOEZ3UWpPYVZxM0lhbEdBV0hodnBjYWtRNk54T3gyaFZzSkN4bEl4TVVCZ3B4djF2VlN3aXA2T2RhVHV4cENYeTZhTEFabUlSeGNINlNRWWVmNERiNzhqT1hCc1NFRWJ5bkJ0OEp6OFRtcmhvWHRPUVwveDhsTlwvM0s0T0k1ZEpBbStLZHN3TzBlVUdMdz09In0=
Base64, of course! So I decoded it and got:
{"GameGuid":"bd120afb-3c64-4e76-937a-fe1628e1db57","GameData":"AgEUwqlp8iLRvVwQfW+WtOHinFWjUaxt51yl3MLCN2w+Lgd9iSOxbRFvvw6g2uSr2RgXTcyqc9YXufdVFe1guS4B10ev\/4BEpO4fPPqeGDZt98ZLJto7IvPBAPTg26htfdLLPvrmn3J4osEZk\/YdysXx0g2kL5GUekX\/TKn+aDUNZIo980fKNDpVu4k+9p7O8DwETBQO+9VatHOIHux0EGGTiKpTdRKKDYAdow5nkggaNjL+aU8CQnurHj6\/3WK6Oo3oUZQGz8UNtDPvC1obotM3gDpct3ZgntX6eZLpx5osuiRsx8SVqaiGoaM89TO1xo8etWoHWAqfaMwxnfnRvLZkU5qFFgLicKE9uFCeH9P+4p9W0QPz89MyshaytWCtRq8FGbH5swIyo9RfvCV4WWZLOBX1u9eYMvFTqd1+f0\/vnUIRQPZt6SFczGixOXkFijOysO0KGOav3bV+QxQq3HoyIL+V5AA22Fa1Z0t28noax0MoQAvOfZz6VJ\/cGr4SgyfPx+DvuUAOe8Rrp3k+v1e9a\/xVN7XgJDmo74ARL\/\/yNa0lu1ljEsv6ukUB\/6QvBgdglHmm8hPkEKO2t3CoypG3AAhE3VUGrcinofLMu92401iZaWYEy12N\/W9qJpSmGiliuXVcHNp9ZmySXHCNe8Ep5XjJMcgxxftEFA0iyDBC7okIV7W6g8dvC4gMqQg1sRF9WLbqSIwKpJ3PFbnuBVMolht43I2K\/mSbVEMUFxr0Nf6+CfyMbnOgfN0opnQW\/k6nQB+d\/2yUVcjhUpqoDiGNHDR2vW\/OBerbCrTJkY+uwhVVp5R6PjXwOUtMzMAzwnSKDLaM+PH2+oe65YtUfcQ3JzZG9mCi6NtfhYYClqkIpzl5V+DMLQwKGoxyxIVx\/QwSOxCyoN3FvotFXASFDYuFoTtrGGHykZQHc9cbK8+dDQp2qXG+uha+yTHlxIQJ2Tq3f1Nscw2Ay\/wgr+UzGDWIlyWbad3YsSMXNUBnpSihv2vLDlAw0P+Rul932S1LxKmK4JZtocO3VZtQyiQJHrIa5WsQ4oorgTt+sFEzljC+NytFCxuvZ\/N6eESPTNL6l0RGfy8sDnJpbGUoKIl\/s0WgLTqzZzqv9mrFNJ\/g6Yv053ssPaIbdmmITn+rzfyHpNrkVAJ7COtaqwegndg7qn08btbc0qy2nkeNpVDmz0H4f4xUW04NJ6+GDwBshMSj5ExaRUYpskqt\/fBf\/ktpadNOgZKvvch8bTMp\/bvM5mvzmsCNQLljS5pFpDR4D5GC97G6s2s14Lb4MRwNhizJ0+5pG43PHwom+UgkVSpoSwO7BOGxd8UXFdCBWHfnhijv5HJmj2Kro87qasKMOM1KsNXKDDGn\/CBdIP0jTRxkJy21TaK0OjmbKEmN7DsVF1tSOCMMkSaWFRj5cUgysW8Ro3orts8ImAmGYehW3BLvXmGUqIcusGILUo8n9no+kcByRK8HSzhUyOrZABwOqnpwQsgO8aPcshrAmsekjJjKocu6C1PInXhj32xihaMRgTlp4UgN9d5p6XepgP8JFK9Dfv5+D3vFplDRofzKNenpElWt23lJLh579KRkBZzAvRp9+aX5Dtxul4x6xYGjAGN1QI4ChMmywITwrRjACpHyd+KlBcLAjT6cYdXlRWdMnvHJrWTE1U3i6HJDYjCemxF1X51ejGPUK6K8OT+2sc3\/kfBbc3B8UBY2+IIcFa7uaeE0W5EbCfp4sM8S5VgWT3uluB6iBNCe2DRkbqvUOHZeImSf87yVKgK+11nNUCW6kg28UM7Hw+2SQ7OSWxB7uuwCkJz743B8qPe9RPz2qXlhtgLNfSHjBibWK+UU5\/E3SYut2+vrKH3VKCo13Sl+DBPLTaaHxdPHKGJPtGT1VhlDg2deLiKeY0hGO0hsIAFY5DaRnSLpYgyBl5pB72kz1Rf\/HXhoFA8mM8hxKcrR+38yvzbl3yvfG7NO1Ez+RjawePZORuUdAbEH2gT+MFopOI+YGYXWPFV8KTmImnpc0e4j76+3Ow4xaaCwN4gtsrRnsb4GiSb6MTh42pGbi8KLnNwmrSES64+V0Z2VD5l\/QCHWZ6BziTXluFaaGB0eAyLOZT31qzm6F00a6uO4F83G8ue0kZhOdA6THuu4MZCTqtTJd3zvZe8m7mhnR6Qa3kNwpMeoer68dlbhdTbkiTSX88uguo5Y\/R2zdaCCXLDneAcedf6iCXan\/N4VlzDaaTKuLhchg3cE2YEXkbxlR7oH5cucxVRxPLmUdJ5LQku\/gCpszFTLSQBgUGdB7sjk8pMaeKa8ix+DWaehN15dPUwW74BUXnnq31tmMvrz3lTMqy8az4S9j4CwZnn24C4y\/Q525zcwv36DRr1Z\/frMiufOmTcRJ1ec2t\/95MGX6HLDjQnpk+hj0Dhnq4l9Xp2nTmdIXRKL3jum3Id\/kmDnI0LZmC0SE+lSWhAb8iqHiyv1lPLbibI+RmyNUMuz\/Iq1+b0+bNSUEzXMx502G+hIpxr5aXCFNbKSXJWd9HtjG4pEAOxDCPsPLN1xn8defKBGds+nWvAkq2eyN3cq3K1SprhvKYwxzr\/ADU9XMs2T5dKquo7erPGhzv5NAMERQcgXcdF4ZgcNgzfa0K8gwhJl8dxeM6r9yTDNqd4bJP4H2\/+s26yypVDgiHPUdq0lTjqe7Smm4DXn5UkaWBGJpID7MX99woa7ctbsa9s88eEIbtbdGX032DqK\/qFkIwQSB8EvaO3IqYgCB9apRBZxrNfVOd0iT5SXrAlxQzAmIwGqhkQeZdVov3pIDI8BLit+8ySPPc2z4+N2o3qvVRgyY8Zf9rSmts53KTFlMW6S3KHCjCsqV7ZhVFF47p7Ax5eyGNkTQVPTNgleEcrxEWEk3aD5K9KN34PD5tgzx7ytc4MGooHfLJVL45zBXa2BUwJluYPimis5MxzeKz73G++IK9eWxZ0DhJEvnqnmIDKopKPtKJ+lZX2QMpKW5PNn7KsAb7hcC1koZ1B8krxoBqUz6Y6uAa69jJcRhNfSMlo+3070nalZROZw4tSUZIr\/asTsngUft\/IEC\/qmI4ogCc4lKgEc\/x+KsWZw+H7BN385F\/jh+UpolLeDSySWpKmv52Yux4i8ydiSMpW6cDM6akOfTehdrSQNP1wpgGChdc94yhZlv6fIaSyOwEAtosqPCTJNh5PR8ePkjnEjDzuyMFh\/jXHHbXJEui2wi3JfVbSXYjrL9MyGuHV1\/XJvkgFNSQGgdRZYBJ8HrHfXgkikzXAI75Kskpc9nwdsLSMDxiV+UF\/TZ7GdD0T6BLJHyBJ+TLgmd6NeFmGG2EVcoGAF64e8d9GfKp\/ZpFXy7GgjkQf3kGG527eWqbRBa5keum1S7tDM43CAFPjOHDnuXjx9EEljrWm1+rMfZx8mksWxxreEs0WQpOhvbORHr6\/dUHgJcYwHY4nD7QgFvRiMwgvtmGnm1pzC5YSu7LKvaeDTkrjFLThZLPCdT+y+IFsl\/Qw4ShReHcvmgQOcAJyIVya6v4OdTHL0JOygqvHkaugPxQczA0D5xmyv\/s8xVoav3lc8\/F8oZnI2Ptols27DIPlNHN2Kvizu47JJhvUoVOYjZUwlFvG5+mpvsHHrHewms3QKE\/7uuFIq9ybwbz4\/S5ktNWCoNRxwD3a1XoJiRJ7TqXvWc5SVnQRy3xwgIoWEmlSZN4DSrbtqNW8vPQiaEtJQtk4JxPo5\/j9WnQbR2Ly1ImdRVWW4FDDm6XkdHLwoNJgFHat5EHu42Qdbcs+WrQSLLAveldbdXwR2BGGQBkbbvEmM0j0xWGi\/hJTX7hQqYsbZJgGwWxuay7xtM4ul5CSVCP+eOMt2Opq3AU4hBKJrgECwGQC3ya3veTCWfy43iDCsvu9\/D2jxulgQGZIY6Nl58sp8IQehlCNNlrsP7xZgFqUVqKubnQtGkKxCo3MgIKBIT1C0z8zCwvGLSJzPBhAX9cD5Mtv84lfWvjQHW35gi4rfvG8qFwHl8FUcZ7\/NnvMySiw+JYFU6KzL0UWvtZU6k1kUZfgicMH7TZTdMhhuOYO5k09Rl3kluX4gsWxRQ4MUkd12l7Qbj9gPeaz4S94p1ws5HjCYaQVD38nsWjoUl\/qAUeX3+Ga\/TsEqd7ShpV1OwX94sh63oyJoX3\/mfiqDiLeGLHHmAhjuvp4RXR\/NbayM5YGaS1MiDLc8+G73dKpkRm3lS44FOIHHw\/\/J9omqIiuvbC4hlGME\/yO1o65QB9yOH12WEEJKBlaCBQTg4fN9LFQq1OcV2dFGzP7SghGoET0tSN8dskhUhgQBoijbpiqUdr4Jk9O+nB4Qv\/lE3oA4\/Xo+nU5x0Ejh3EahjjRCVsStGS7jO5nPOnkhBR4NWt4JoBkgN+IL8rColTzEWQAkTY2O0hB0unWBhuTGBGnOpPywjezrFyZX73X\/sHHjQapXvwRdbJ2nVvm9mW4jfuoeeBzluQ8gCWSQp9mS+ekPx9eSp3fa1ASyYuWewMNR3ubPCHQM2NL6hR+vdoX+hchuw3vRzKh8Ag8Z\/GlB9pCVaJH+T3hzT0z0I7IOWq\/OXoI4B2WXOkYL3FMFnERO\/b6o08CJnYNvKXtaoeLKAVqDYAftQJI9fWFdk6BL84slWGaxmVup1wVNt40qW\/yR9vbgHqkm\/Zk\/yhNo\/VKidz3bbYSGqXhC2sj1LLjIKoVd3J0uyL1If5beSX3o2BHRbi0ZfLntwzsnlaPfaw0t9nFXmgLEEUh0gG\/fi4EOpChC43T4W4+hKd43I76zD3C8Y97e+MbryhzGIXaxBgx5GOGQgZVO4WeSn5Tn4Ys2CMoJJgTJnvh0QQ7Y962ppH1xcActgPLnuxXpW49Btv0nM5IcfL1gCyEConZ5GfnAoEyI9jc7S1W21tEJltFywysVeABKqjfcxiAGIa5Ok92WRA\/i3oezhyz4popcezW2o++MH3IAxFeNWRgVma\/E04V+NINQ5EN+MzRwYFV7sDEIh9djpnzrypFrpMHrPe\/j8anbG8hMmj6E7Bh7wotCSfz4h8FzLa11zjodyEm4nRI8KevS8zdc7j41JgLaNdZWUow2zFzOcqbYCUd9qhHu1t7yce5dxvBS2M0eVtxL8pdTfqXLXMoGbJWVbR2YdDU1mG7ehk\/5EU+bmFQXLO5jgQjx9\/Dxs+a0dRXFq8XyoTGPwQSiTYktnTa878HBPA7f8GRdQTeiO0oO14eMXpMbVxDv\/IAfu5A9EgQSB3cKLMxAkIY2oe2+MH4GdBHZt48cSWDzKuKjDAGks016GUaX0ryVxhz45nQZkH16aeLaCKAu1K9U\/xWQ00zx0RuaK8+B+\/+1gPy0TxyVHm8FwQjOaVq3IalGAWHhvpcakQ6NxOx2hVsJCxlIxMUBgpxv1vVSwip6OdaTuxpCXy6aLAZmIRxcH6SQYef4Db78jOXBsSEEbynBt8Jz8TmrhoXtOQ\/x8lN\/3K4OI5dJAm+KdswO0eUGLw=="}
Looks like a dict with another Base64 string in the GameData key. However, Base64 decoding that gives me a bunch of binary data:
02 01 14 c2 a9 69 f2 22 d1 bd 5c 10 7d 6f 96 b4 .....i."..\.}o..
e1 e2 9c 55 a3 51 ac 6d e7 5c a5 dc c2 c2 37 6c ...U.Q.m.\....7l
3e 2e 07 7d 89 23 b1 6d 11 6f bf 0e a0 da e4 ab >..}.#.m.o......
d9 18 17 4d cc aa 73 d6 17 b9 f7 55 15 ed 60 b9 ...M..s....U..`.
which is uncompressible:
>>> len(game_data)
4114
>>> len(game_data.encode("zlib"))
4125
It's not zlib-encoded:
>>> game_data.decode("zlib")
Traceback (most recent call last):
File "<pyshell#126>", line 1, in <module>
game_data.decode("zlib")
File "C:\Python27\lib\encodings\zlib_codec.py", line 43, in zlib_decode
output = zlib.decompress(input)
error: Error -3 while decompressing data: incorrect header check
And it's not even zlib without the header:
>>> def inflate(data):
import zlib
decompress = zlib.decompressobj(
-zlib.MAX_WBITS # see above
)
inflated = decompress.decompress(data)
inflated += decompress.flush()
return inflated
>>> inflate("roflcopters".encode("zlib")[2:])
'roflcopters'
>>> inflate(game_data)
Traceback (most recent call last):
File "<pyshell#130>", line 1, in <module>
inflate(game_data)
File "<pyshell#128>", line 6, in inflate
inflated = decompress.decompress(data)
error: Error -3 while decompressing: invalid distance too far back
I've tried using this online Objective-C compiler along with various classes like NSUnarchiver, NSKeyedUnarchiver, and NSPropertyListSerialization, but no luck, yet. Those all seem to produce output which at least has recognizable strings in it so even if they are used, something else must be going on as well.
The only similarity between different batches has been that they all start with 0x0201. Everything else seems totally different, even for subsequent updates for the same match, which makes me wonder if there's some obfuscation/encryption going on...
Any tips on where I can go from here?

It's almost certainly some proprietary structure from within the game, serialized out to bytes. 0x0201 could well be versioning for a struct, or just a set of flags that doesn't change across blobs you've seen.
There's no need to assume this is intentionally obfuscated or encrypted data. Standard textual (JSON, XML) and binary (bplist) containers are increasingly ubiquitous and often make one's life easier, but there's nothing nefarious about representing data in a more raw binary format if it's convenient. (See below re: encryption)
To really reverse engineer this in any more detail may be a Sisyphean task: figure out what the values in the binary blob are, numerically or otherwise. Match up the game state data with known (or unknown) values for the game. Do reverse engineering on the code to see what it's writing. That's some varsity stuff, but it's possible.
Re: encryption: encryption, or at least signing, is common in some parts of online gaming to prevent tampering with game state by bots to gain advantage. Whether that's happening here or not is anyone's guess. A bunch of floating point numbers that represent world positions could look similarly random.

Related

Finding the documentation for parsing data found in BLE Advertising Respones

This is not a programming related question. It's a question about where to find the right documentation.
If this is not the right place to ask, please let me know and I'll move the question
I'm working on a C++-Deamon for parsing recieved BLE Advertising Packages (like hcidump from bleuz). For this I'm focusing on parsing only LE Advertising Report events (Bluetooth Core Specification 7.7.65.2, S. 2382 ff)
E. g: I need to extract the local name and the 16-bit UUID. This information can be found (if broadcasted) in the field "data".
I can extract the data part from the Advertising Event Packet (since it's described in the Core Specification how these packages are arranged) but I can't parse the data. I wasn't able to find a description of the codes used in this data frame.
I also went through the Core Specification Supplement, but I couldn’t find the corresponding codes. I only found some examples:
See Site 26: Apparently the byte 0x09 indicates that the following n bytes are the broadcasted name of the BLE-Device.
Or Site 25: 0x03 seems to indicate that a "Complete list of 16-bit Service UUIDs" is following.
So far I gained my knowledge about this by just going throught these (incomplete) list of examples I found and from looking at the source code of hcidump.c.
Now the question is: Where can I find the official complete list to those bytes/codes?
Just an example of the package content I revieve:
Respone: 04 3E 1C 02 01 04 01 55 19 19 E4 8D FE 10 0F 09 54 65 73 74
20 49 50 53 50 20 6E 6F 64 65 C5
It should be able to extract the following data
HCI Event: LE Meta Event (0x3e) plen 28
LE Advertising Report
SCAN_RSP - Scan Response (4)
bdaddr FE:8D:E4:19:19:55 (Random)
Complete local name: 'Test IPSP node'
RSSI: -61
After going throught the whole Bluetooth SIG, I finally found the site where these codes are described:
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/

What is this most likely if not Lua bytecode?

I considered posting this in reverse engineering but because of the brevity of the question and general irrelevance I decided to post it here.
This may be a really easy question but I haven't been able to find an answer - I should probably read a bit of Lua's source before asking this, but here goes: in a program that has integrated Lua, this is the first few bytes of the buffer being executed:
11 16 A5 F1 9E A8 8B 64 78 8E 2F EA 1C 31 D3 B6 D3 D5 77 23 77 79 1B 73
I've never understood Lua very well, but that doesn't look like byte code. Is there anything else it could be or is it just certainly something custom? I'm pretty sure actual Lua opcodes haven't been modified.
if possible put whole file somewhere. Lua bytecode usualy starts with 1B 4C 75 61 and then some debug infos however there are zeros for spliting of the informations which your sample doesnt have
other way is asking on http://forum.xentax.com/
Put this into a file and try running luac -l filename on it. This will disassemble the binary to the VM instructions.
If it is Lua code you'll get some meaningful output.

Understanding iBeacon data : the power field and other bytes

I am new to the Bluetooth system and I am trying to understand the data used for the new Apple's technology : iBeacon.
There is already some nice answers which explain how it works and I have been reading everything I could find (especially the Bluetooth Specification). Still, I am missing some points and I will go for an example first : (I am using the Set Advertising Data Command, it misses here the hcitool cmd before the OGF)
0x08 0x0008 1E 02 01 1A 1A FF 4C 00 02 15 E2 C5 6D B5 DF FB 48 D2 B0 60 D0 F5 A7 10 96 E0 00 00 00 00 C5 00
I will list here what I didn't understand or find information about.
Is there any information anywhere about the OGF (here it is 0x08)? I know it stands for OpCode Group Field, but contratry to the OCF which follows the OGF, I didn't find anything.
What does the 02 01 1A 1A bytes line stand for? I know that the first byte, 1E, tells the length of the rest of the data and after that line, starting with FF, you get the manufacturer specific data. But I couldn't find anything about those 4 bytes.
How does the power byte work? Here it is C5. I know that what I get is the dBm value when ranging my iBeacon (on my iPhone for instance). And I know that the higher the value (on that power byte), the higher the power which means more accuracy but also more energy consumption. But how do you use that byte? What are the min and max values you can set? Or is there any kind of formula there? Do you get a set dBm value (at one meter from your iBeacon) for a set value on the byte?
Thank you.
Answers to the first two questions can be found in the gigantic Bluetooth 4.0 Core spec.
The OGF of 0x08 groups OCF commands for LE Controllers:
For the LE Controller Commands, the OGF code is defined as 0x08.
(Bluetooth Specification Version 4.0 [Vol 2], page 1114)
Because the 0x0008 OCF command is a controller command, you have to use the 0x08 OGF code with it. Confused? Forget it. Just know you use 0x08 0x0008 to set the advertising data using hcitool.
The byte sequence starting the advertisement is as follows:
1E Number of bytes that follow in the advertisement
02 Number of bytes that follow in first AD structure
01 Flags AD type
1A Flags value 0x1A = 000011010
bit 0 (OFF) LE Limited Discoverable Mode
bit 1 (ON) LE General Discoverable Mode
bit 2 (OFF) BR/EDR Not Supported
bit 3 (ON) Simultaneous LE and BR/EDR to Same Device Capable (controller)
bit 4 (ON) Simultaneous LE and BR/EDR to Same Device Capable (Host)
1A Number of bytes that follow in second (and last) AD structure
FF Manufacturer specific data AD type
4C Company identifier code LSB
00 Company identifier code MSB (0x004C == Apple)
02 Byte 0 of iBeacon advertisement indicator
15 Byte 1 of iBeacon advertisement indicator
-- Bluetooth Specification Version 4.0 [Vol 3], "ADVERTISING AND SCAN RESPONSE DATA FORMAT" p. 375
-- Bluetooth Specification Version 4.0 [Vol 3], Appendix C (NORMATIVE): EIR AND AD FORMATS", p. 401
The power field is simply a one byte two's complement number representing the "measured power" in RSSI at one meeter away. In simpler terms
Here is how that works:
Hold an iBeacon scanner (like Locate for iBeacon for iOS) one meter away from your iBeacon transmitter.
Read its signal strength in RSSI. It will be a number between -1 and -127. (-1 is very strong, -127 is very weak)
Convert this number into a hex using two's complement. (Add 256 then convert to hex)
Note: The power field can be 80-FF. If it is 00, iOS will not do a distance calculation at all. You can read more on how this is used here.

Addressing memory data in 32 bit protected mode with nasm

So my book says i can define a table of words like so:
table: dw "13,37,99,99"
and that i can snatch values from the table by incrementing the index into the address of the table like so:
mov ax, [table+2] ; should give me 37
but instead it places 0x2c33 in ax rather than 0x3337
is this because of a difference in system architecture? maybe because the book is for 386 and i'm running 686?
0x2C is a comma , and 0x33 is the character 3, and they appear at positions 2 and 3 in your string, as expected. (I'm a little confused as to what you were expecting, since you first say "should give me 37" and later say "rather than 0x3337".)
You have defined a string constant when I suspect that you didn't mean to. The following:
dw "13,37,99,99"
Will produce the following output:
Offset 00 01 02 03 04 05 06 07 08 09 0A 0B
31 33 2C 33 37 2C 39 39 2C 39 39 00
Why? Because:
31 is the ASCII code for '1'
33 is the ASCII code for '3'
2C is the ASCII code for ','
...
39 is the ASCII code for '9'
NASM also null-terminates your string by putting 0 byte at the end (If you don't want your strings to be null-terminated use single quotes instead, '13,37,99,99')
Take into account that ax holds two bytes and it should be fairly clear why ax contains 0x2C33.
I suspect what you wanted was more along the lines of this (no quotes and we use db to indicate we are declaring byte-sized data instead of dw that declares word-sized data):
db 13,37,99,99
This would still give you 0x6363 (ax holds two bytes / conversion of 99, 99 to hex). Not sure where you got 0x3337 from.
I recommend that you install yourself a hex editor and have an experiment inspecting the output from NASM.

Convert DeDe constant to valid declaration or other interface extraction tool?

I am using DeDe to create an API (Interface) I can compile to. (Strictly legit: while we wait for the vendor to deliver a D2010 version in two months, we can at least get our app compiling...)
We'll stub out all methods.
Dede emits constant declarations like these:
LTIMGLISTCLASS =
00: ÿÿÿÿ....LEADIMGL|FF FF FF FF 0D 00 00 00 4C 45 41 44 49 4D 47 4C|
10: IST32. |49 53 54 33 32 00|;
DS_PREFIX =
0: ÿÿÿÿ....DICM.|FF FF FF FF 04 00 00 00 44 49 43 4D 00|;
How would I convert these into a compilable statement?
In theory, I don't care about the actual values, since I doubt they're use anywhere, but I'd like to get their size correct. Are these integers, LongInts or ???
Any other hints on using DeDe would be welcome.
Those are strings. The first four bytes are the reference count, which for string literals is always -1 ($ffffffff). The next four bytes are the character count. Then comes the characters an a null terminator.
const
LTIMGLISTCLASS = 'LEADIMGLIST32'; // 13 = $0D characters
DS_PREFIX = 'DICM'; // 4 = $04 characters
You don't have to "doubt" whether those constants are used anywhere. You can confirm it empirically. Compile your project without those constants. If it compiles, then they're not used.
If your project doesn't compile, then those constants must be used somewhere in your code. Based on the context, you can provide your own declarations. If the constant is used like a string, then declare a string; if it's used like an integer, then declare an integer.
Another option is to load your project in a version of Delphi that's compatible with the DCUs you have. Use code completion to make the IDE display the constant and its type.

Resources