Lua: converting from float to int - lua

Even though Lua does not differentiate between floating point numbers and integers, there are some cases when you want to use integers. What is the best way to covert a number to an integer if you cannot do a C-like cast or without something like Python's int?
For example when calculating an index for an array in
idx = position / width
how can you ensure idx is a valid array index? I have come up with a solution that uses string.find, but maybe there is a method that uses arithmetic that would obviously be much faster. My solution:
function toint(n)
local s = tostring(n)
local i, j = s:find('%.')
if i then
return tonumber(s:sub(1, i-1))
else
return n
end
end

You could use math.floor(x)
From the Lua Reference Manual:
Returns the largest integer smaller than or equal to x.

Lua 5.3 introduced a new operator, called floor division and denoted by //
Example below:
Lua 5.3.1 Copyright (C) 1994-2015 Lua.org, PUC-Rio
>12//5
2
More info can be found in the lua manual

#Hofstad is correct with the math.floor(Number x) suggestion to eliminate the bits right of the decimal, you might want to round instead. There is no math.round, but it is as simple as math.floor(x + 0.5). The reason you want to round is because floats are usually approximate. For example, 1 could be 0.999999996
12.4 + 0.5 = 12.9, floored 12
12.5 + 0.5 = 13, floored 13
12.6 + 0.5 = 13.1, floored 13
local round = function(a, prec)
return math.floor(a + 0.5*prec) -- where prec is 10^n, starting at 0
end

why not just use math.floor()? it would make the indices valid so long as the numerator and denominator are non-negative and in valid ranges.

Related

2^65 modulo 101 incorrect anwser

This code checks that the value a maps uniquely for the values 1 to 100 using the formula (a^x) % 101
local function f(a)
found = {}
bijective = true
for x = 1, 100 do
value = (a^x) % 101
if found[value] then
bijective = false
break
else
found[value] = x
end
end
return bijective
end
However does not produce the expected result.
it maps 2^65 % 101 to 56, which matches the value produced by 2^12 % 101 and I get a false result, however the correct value for 2^65 % 101 is 57 and 2 actually should produce all unique values resulting in a true result.
The error described above is specifically on Lua 5.1, is this just a quirk of Lua's number typing? Is there a way to make this function work correctly in 5.1?
The error described above is specifically on Lua 5.1, is this just a quirk of Lua's number typing? Is there a way to make this function work correctly in 5.1?
First of all, this is not an issue with Lua's number typing since 2^65, being a (rather small) power of two, can be represented exactly by the double precision since it uses an exponent-mantissa representation. The mantissa can simply be set to all zeroes (leading one is implicit) and the exponent must be set to 65 (+ offset).
I tried this on different Lua versions and PUC Lua 5.1 & 5.2 as well as LuaJIT have the issue; Lua 5.3 (and presumably later versions as well) are fine. Interestingly, using math.fmod(2^65, 101) returns the correct result on the older Lua versions but 2^65 % 101 does not (it returns 0 instead).
This surprised me so I dug in the Lua 5.1 sources. This is the implementation of math.fmod:
#include <math.h>
...
static int math_fmod (lua_State *L) {
lua_pushnumber(L, fmod(luaL_checknumber(L, 1), luaL_checknumber(L, 2)));
return 1;
}
this also is the only place where fmod from math.h appears to be used. The % operator on the other hand is implemented as documented in the reference manual:
#define luai_nummod(a,b) ((a) - floor((a)/(b))*(b))
in src/luaconf.h. You could trivially redefine it as fmod(a,b) to fix your issue. In fact Lua 5.4 does something similar and even provides an elaborate explanation in its sources!
/*
** modulo: defined as 'a - floor(a/b)*b'; the direct computation
** using this definition has several problems with rounding errors,
** so it is better to use 'fmod'. 'fmod' gives the result of
** 'a - trunc(a/b)*b', and therefore must be corrected when
** 'trunc(a/b) ~= floor(a/b)'. That happens when the division has a
** non-integer negative result: non-integer result is equivalent to
** a non-zero remainder 'm'; negative result is equivalent to 'a' and
** 'b' with different signs, or 'm' and 'b' with different signs
** (as the result 'm' of 'fmod' has the same sign of 'a').
*/
#if !defined(luai_nummod)
#define luai_nummod(L,a,b,m) \
{ (void)L; (m) = l_mathop(fmod)(a,b); \
if (((m) > 0) ? (b) < 0 : ((m) < 0 && (b) > 0)) (m) += (b); }
#endif
Is there a way to make this function work correctly in 5.1?
Yes: The easy way is to use fmod. This may work for these particular numbers since they still fit in doubles due to the base being 2 and the exponent being moderately small, but it won't work in the general case. The better approach is to leverage modular arithmetics to keep your intermediate results small, never storing numbers significantly larger than 101^2 since (a * b) % c == (a % c) * (b % c).
local function f(a)
found = {}
bijective = true
local value = 1
for _ = 1, 100 do
value = (value * a) % 101 -- a^x % 101
if found[value] then
bijective = false
break
else
found[value] = x
end
end
return bijective
end

How to Round to the Nearest Tenth?

Given any number of the sort 78.689 or 1.12 for instance, what I'm looking for is to programmatically round the number to the nearest tenth place after the decimal.
I'm trying to do this in an environment where there is a math.floor() function that rounds to the lowest whole number, and as far as I can tell from documentation there's nothing like PHP's round() function.
There's simple snippet at: http://lua-users.org/wiki/SimpleRound
function round(num, numDecimalPlaces)
local mult = 10^(numDecimalPlaces or 0)
return math.floor(num * mult + 0.5) / mult
end
It will misbehave when numDecimalPlaces is negative, but there's more examples on that page.
You can use coercion to do this...
It work just like printf... You can try to do something like in this snippet.
value = 8.9756354
print(string.format("%2.1f", value))
-- output: 9.0
Considering that this is roblox, it would just be easier to make this a global variable instead of making a single module or creating your own gloo.
_G.round = function(x, factor)
local factor = (factor) and (10 ^ factor) or 0
return math.floor((x + 0.5) * factor) / factor
end
In my case, I was simply trying to make a string representation of this number... however, I imagine this solution could prove useful to others as well.
string.sub(tostring(percent * 100), 1, 4)
so to bring it back to a numerical representation, you could simply call tonumber() on the resulting number.

How to create Fibonacci sequence in Lua?

I wrote a small script that creates Fibonacci sequence and returns a sum of all even integers.
function even_fibo()
-- create Fibonacci sequence
local fib = {1, 2} -- starting with 1, 2
for i=3, 10 do
fib[i] = fib[i-2] + fib[i-1]
end
-- calculate sum of even numbers
local fib_sum = 0
for _, v in ipairs(fib) do
if v%2 == 0 then
fib_sum = fib_sum + v
end
end
return fib_sum
end
fib = even_fibo()
print(fib)
The function creates the following sequence:
1, 2, 3, 5, 8, 13, 21, 34, 55
And returns the sum of its even numbers: 44
However, when I change the stop index from 10 to 100, in for i=3, 100 do the returned sum is negative -8573983172444283806 because the values become too big.
Why is my code working for 10 and not for 100?
Prior to version 5.3, Lua always stored numbers internally as floats. In 5.3 Lua numbers can be stored internally as integers or floats. One option is to run Lua 5.2, I think you'll find your code works as expected there. The other option is to initialize your array with floats which will promote all operations on them in the future to floats:
local fib = {1.0, 2.0}
Here is a hack written in hindsight.
The code exploits the mathematical fact that the even Fibonacci numbers are exactly those at indices that are multiple of 3.
This allows us to avoid testing the parity of very large numbers and provides high-order digits that are correct when you do the computation in floating-point. Then we redo it looking only at the low-order digits and combine the results. The output is 286573922006908542050, which agrees with WA. Values of d between 5 and 15 work fine.
a,b=0.0,1.0
s=0
d=10
for n=1,100/3 do
a,b=b,a+b
a,b=b,a+b
s=s+b
a,b=b,a+b
end
h=string.format("%.0f",s):sub(1,-d-1)
m=10^d
a,b=0,1
s=0
for n=1,100/3 do
a,b=b,(a+b)%m
a,b=b,(a+b)%m
s=(s+b)%m
a,b=b,(a+b)%m
end
s=string.format("%0"..d..".0f",s)
print(h..s)

How to return very long integer in Lua

I am trying to return very long integer number but my result returns as
"7.6561197971049e+016".
How do I make it return 76561197971049296 ?
local id64 = 76561197960265728
Z = string.match("STEAM_0:0:5391784", 'STEAM_%d+:%d+:(%d+)')
Y = string.match("STEAM_0:0:5391784", 'STEAM_%d+:(%d+):%d+')
--For 64-bit systems
--Let X, Y and Z constants be defined by the SteamID: STEAM_X:Y:Z.
--Let V be SteamID64 identifier of the account type (0x0110000100000000 in hexadecimal format).
--Using the formula W=Z*2+V+Y
if Z == nil then
return "none"
else
return Z*2+id64+Y
end
I installed lbc arbitrary precision now with this code
return bc.add(bc.number(id64),bc.number(2)):tostring()
it returns 70000000000000002 but if I delete 3 digits from id64 it displays correctly.
How can I get correct result without deleting the digits?
You need to use strings for long numbers. Otherwise, the Lua lexer converts them to doubles and loses precision in this case. Here is code using my lbc:
local bc=require"bc"
local id64=bc.number"76561197960265728"
local Y,Z=string.match("STEAM_0:0:5391784",'STEAM_%d+:(%d+):(%d+)')
if Z == nil then
return "none"
else
return (Z*2+id64+Y):tostring()
end
check out this library for arbitrary precision arithmetics. this so post might be of interest to you as well.
Assuming your implementation of Lua supports that many significant digits in the number type, your return statement is returning that result.
You're probably seeing exponential notation when you convert the number to a string or printing it. You can use the string.format function to control the conversion:
assert( "76561197971049296" == string.format("%0.17g", 76561197971049296))
If number is an IEEE-754 double, then it doesn't work. You do have to know how your Lua is implemented and keep in mind the the technical limitations.
If you have luajit installed, you can do this:
local ffi = require("ffi")
steamid64 = tostring(ffi.new("uint64_t", 76561197960265728) + ffi.new("uint64_t", tonumber(accountid)))
steamid64 = string.sub(steamid64, 1, -4) -- to remove 'ULL at the end'
Hope it helps.

Lua base converter

I need a base converter function for Lua. I need to convert from base 10 to base 2,3,4,5,6,7,8,9,10,11...36 how can i to this?
In the string to number direction, the function tonumber() takes an optional second argument that specifies the base to use, which may range from 2 to 36 with the obvious meaning for digits in bases greater than 10.
In the number to string direction, this can be done slightly more efficiently than Nikolaus's answer by something like this:
local floor,insert = math.floor, table.insert
function basen(n,b)
n = floor(n)
if not b or b == 10 then return tostring(n) end
local digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
local t = {}
local sign = ""
if n < 0 then
sign = "-"
n = -n
end
repeat
local d = (n % b) + 1
n = floor(n / b)
insert(t, 1, digits:sub(d,d))
until n == 0
return sign .. table.concat(t,"")
end
This creates fewer garbage strings to collect by using table.concat() instead of repeated calls to the string concatenation operator ... Although it makes little practical difference for strings this small, this idiom should be learned because otherwise building a buffer in a loop with the concatenation operator will actually tend to O(n2) performance while table.concat() has been designed to do substantially better.
There is an unanswered question as to whether it is more efficient to push the digits on a stack in the table t with calls to table.insert(t,1,digit), or to append them to the end with t[#t+1]=digit, followed by a call to string.reverse() to put the digits in the right order. I'll leave the benchmarking to the student. Note that although the code I pasted here does run and appears to get correct answers, there may other opportunities to tune it further.
For example, the common case of base 10 is culled off and handled with the built in tostring() function. But similar culls can be done for bases 8 and 16 which have conversion specifiers for string.format() ("%o" and "%x", respectively).
Also, neither Nikolaus's solution nor mine handle non-integers particularly well. I emphasize that here by forcing the value n to an integer with math.floor() at the beginning.
Correctly converting a general floating point value to any base (even base 10) is fraught with subtleties, which I leave as an exercise to the reader.
you can use a loop to convert an integer into a string containting the required base. for bases below 10 use the following code, if you need a base larger than that you need to add a line that mapps the result of x % base to a character (usign an array for example)
x = 1234
r = ""
base = 8
while x > 0 do
r = "" .. (x % base ) .. r
x = math.floor(x / base)
end
print( r );

Resources