Finding multiple objects in an image - image-processing

I am currently trying to detect [P Plates]
in images made from panoramas off the top of a car (so the P plates could be coming from in front or behind me, and may be distorted). There may be more than 2 P plates so I would need the ability to detect more than 1 at a time. I have used OpenCV template matching with mixed success, it doesn't seem to cope with P plates on an angle well and I cannot seem to get it to recognise 2 in an image. I have also tried SURF but with no luck. Does anyone have any recommendations for the kind of algorithm I should use here (preferably one that is integrated into OpenCV).

You may want to go with SIFT using Rob Hess' SIFT Library. It's using OpenCV and is pretty fast.
Another way is to detect squares and than use content of the square for further processing.

Related

How to recognize the color of a poker card using OpenCV

I am currently willing to implement an iOS app that uses OCR to compute poker stats (you put your cards on a table, then take a picture with your iPhone camera and then magic happens). I know that OpenCV for iOS is the way to go but I don't find any code sample to also recognize the color (spade, heart, club, diamond) of the cards. How can I do it?
There are different ways of "understanding" the picture and each way has it's own pros and cons. template matching will not be a good idea since the cards are different and simply a very round heart and somewhat sharp and pointy heart would be the same but for template matching it would be a totally different "heart" , If you are sure that the user is going to input 2 cards than you would rather crop the cards and separate them. This can be done with simply snap color detection ( use canny edge detector to detect edges). Then you want to search for all the suits and find which one got the best result. You can use the "BOW" (bag of words approach) (google it a little bit) it's about building a visual vocabulary and simply with the frequency of visual words you must be able to tell which is which.
Generally nothing can give you a 100% guarantee but with BOW you can pull out some interesting results.

PARABOLIC (not panoramic) video stitching?

I want to do something like this but in reverse-- so that the cameras are outside and pointing inward. Let's start with the abstract and get specific:
1) Are there any TOOLS that will do this for me? How close can I get using existing software?
2) Say the nearest tool is a graphics library like OpenCV. I've taken linear algebra and have an undergraduate degree in CS but without any special training in graphics. Where should I go from there?
3) If I really am undergoing a decade-long spiritual quest of a self-teaching+programming exercise to make this happen, are there any papers or other resources that you aware of that might aid me?
I think the demo you linked uses a 360° camera (see the black circle on the bottom) and does not involve stitching in any way.
About your question, are you aware of this work? They don't do stitching either, just blending between different views.
If you use inward views, then the objects you will observe will probably be quite close to the cameras, while standard stitching assumes that objects are far away. Close 3D objects mean high distortion when you change the viewpoint (i.e. parallax & occlusions), which makes it difficult to interpolate between two views. Hence, if you want stitching, then your main problem is to correctly handle parallax effects & occlusions between the views.
In my opinion, the most promising approach would be to do live stereo matching (i.e. dense 3D reconstruction) between the two camera images closest to your current viewpoint, and then interpolate the estimated disparities to generate an expected image. However, it's not likely to run in real-time, as demonstrated in the demo you linked, and the result could be quite ugly...
EDIT
You can also have a look at this paper, which uses a different but interesting approach, however maybe not directly useful in your case since it requires the new viewpoint to be visible in the available images.

OpenCV compare similar hand drawn images

I am trying to compare two mono-chrome, basic hand drawn images, captured electronically. The scale may be different but the essences of the image is the same. I want to compare one hand drawn image to a save library of images and get a relative score of how similar they are. Think of several basic geometric shapes, lines, and curves that make up a drawing.
I have tried several techniques without much luck. Pixel based comparisons are too exact. I have tried scaling and cropping images and that did not get accurate results.
I have tried OpenCV with C# and have had a little success. I have experimented with SURF and it works for a few images, but not others that the eye can tell are very similar.
So now my question: Are there any examples of using openCV or commercial software that can support comparing drawings that are not exact? I prefer C# but I am open to any solutions.
Thanks in advance for any guidance.
(I have been working on this for over a month and have searched the internet and Stack Overflow without success. I of course could have missed something)
You need to extract features from these images and after that using a basic euclidean distance would be enough to calculate similarity. But hand writtend drawn thins are not easy to extract features. For example, companies that work on face recognition generally have much less accuracy on drawn face portraits.
I have a suggestion for you. For a machine learning homework, one of my friends got the signature recognition assingment. I do not fully know how he did it with a high accuracy, but I know feature extraction part. Firtstly he converted it to binary image. And than he calculated the each row's black pixel count. Than he used that features to train a NN or etc.
So you can use this similar approach to extract features. Than use a euclidean distance to calculate similarities.

Finger/Hand Gesture Recognition using Kinect

Let me explain my need before I explain the problem.
I am looking forward for a hand controlled application.
Navigation using palm and clicks using grab/fist.
Currently, I am working with Openni, which sounds promising and has few examples which turned out to be useful in my case, as it had inbuild hand tracker in samples. which serves my purpose for time being.
What I want to ask is,
1) what would be the best approach to have a fist/grab detector ?
I trained and used Adaboost fist classifiers on extracted RGB data, which was pretty good, but, it has too many false detections to move forward.
So, here I frame two more questions
2) Is there any other good library which is capable of achieving my needs using depth data ?
3)Can we train our own hand gestures, especially using fingers, as some paper was referring to HMM, if yes, how do we proceed with a library like OpenNI ?
Yeah, I tried with the middle ware libraries in OpenNI like, the grab detector, but, they wont serve my purpose, as its neither opensource nor matches my need.
Apart from what I asked, if there is something which you think, that could help me will be accepted as a good suggestion.
You don't need to train your first algorithm since it will complicate things.
Don't use color either since it's unreliable (mixes with background and changes unpredictably depending on lighting and viewpoint)
Assuming that your hand is a closest object you can simply
segment it out by depth threshold. You can set threshold manually, use a closest region of depth histogram, or perform connected component on a depth map to break it on meaningful parts first (and then select your object based not only on its depth but also using its dimensions, motion, user input, etc). Here is the output of a connected components method:
Apply convex defects from opencv library to find fingers;
Track fingers rather than rediscover them in 3D.This will increase stability. I successfully implemented such finger detection about 3 years ago.
Read my paper :) http://robau.files.wordpress.com/2010/06/final_report_00012.pdf
I have done research on gesture recognition for hands, and evaluated several approaches that are robust to scale, rotation etc. You have depth information which is very valuable, as the hardest problem for me was to actually segment the hand out of the image.
My most successful approach is to trail the contour of the hand and for each point on the contour, take the distance to the centroid of the hand. This gives a set of points that can be used as input for many training algorithms.
I use the image moments of the segmented hand to determine its rotation, so there is a good starting point on the hands contour. It is very easy to determine a fist, stretched out hand and the number of extended fingers.
Note that while it works fine, your arm tends to get tired from pointing into the air.
It seems that you are unaware of the Point Cloud Library (PCL). It is an open-source library dedicated to the processing of point clouds and RGB-D data, which is based on OpenNI for the low-level operations and which provides a lot of high-level algorithm, for instance to perform registration, segmentation and also recognition.
A very interesting algorithm for shape/object recognition in general is called implicit shape model. In order to detect a global object (such as a car, or an open hand), the idea is first to detect possible parts of it (e.g. wheels, trunk, etc, or fingers, palm, wrist etc) using a local feature detector, and then to infer the position of the global object by considering the density and the relative position of its parts. For instance, if I can detect five fingers, a palm and a wrist in a given neighborhood, there's a good chance that I am in fact looking at a hand, however, if I only detect one finger and a wrist somewhere, it could be a pair of false detections. The academic research article on this implicit shape model algorithm can be found here.
In PCL, there is a couple of tutorials dedicated to the topic of shape recognition, and luckily, one of them covers the implicit shape model, which has been implemented in PCL. I never tested this implementation, but from what I could read in the tutorial, you can specify your own point clouds for the training of the classifier.
That being said, you did not mentioned it explicitly in your question, but since your goal is to program a hand-controlled application, you might in fact be interested in a real-time shape detection algorithm. You would have to test the speed of the implicit shape model provided in PCL, but I think this approach is better suited to offline shape recognition.
If you do need real-time shape recognition, I think you should first use a hand/arm tracking algorithm (which are usually faster than full detection) in order to know where to look in the images, instead of trying to perform a full shape detection at each frame of your RGB-D stream. You could for instance track the hand location by segmenting the depthmap (e.g. using an appropriate threshold on the depth) and then detecting the extermities.
Then, once you approximately know where the hand is, it should be easier to decide whether the hand is making one gesture relevant to your application. I am not sure what you exactly mean by fist/grab gestures, but I suggest that you define and use some app-controlling gestures which are easy and quick to distinguish from one another.
Hope this helps.
The fast answer is: Yes, you can train your own gesture detector using depth data. It is really easy, but it depends on the type of the gesture.
Suppose you want to detect a hand movement:
Detect the hand position (x,y,x). Using OpenNi is straighforward as you have one node for the hand
Execute the gesture and collect ALL the positions of the hand during the gesture.
With the list of positions train a HMM. For example you can use Matlab, C, or Python.
For your own gestures, you can test the model and detect the gestures.
Here you can find a nice tutorial and code (in Matlab). The code (test.m is pretty easy to follow). Here is an snipet:
%Load collected data
training = get_xyz_data('data/train',train_gesture);
testing = get_xyz_data('data/test',test_gesture);
%Get clusters
[centroids N] = get_point_centroids(training,N,D);
ATrainBinned = get_point_clusters(training,centroids,D);
ATestBinned = get_point_clusters(testing,centroids,D);
% Set priors:
pP = prior_transition_matrix(M,LR);
% Train the model:
cyc = 50;
[E,P,Pi,LL] = dhmm_numeric(ATrainBinned,pP,[1:N]',M,cyc,.00001);
Dealing with fingers is pretty much the same, but instead of detecting the hand you need to detect de fingers. As Kinect doesn't have finger points, you need to use a specific code to detect them (using segmentation or contour tracking). Some examples using OpenCV can be found here and here, but the most promising one is the ROS library that have a finger node (see example here).
If you only need the detection of a fist/grab state, you should give microsoft a chance. Microsoft.Kinect.Toolkit.Interaction contains methods and events that detects the grip / grip release state of a hand. Take a look at the HandEventType of InteractionHandPointer . That works quite good for the fist/grab detection, but does not detect or report the position of individual fingers.
The next kinect (kinect one) detects 3 joint per hand (Wrist, Hand, Thumb) and has 3 hand based gestures: open, closed (grip/fist) and lasso (pointer). If that is enough for you, you should consider the microsoft libraries.
1) If there are a lot of false detections, you could try to extend the negative sample set of the classifier, and train it again. The extended negative image set should contain such images, where the fist was false detected. Maybe this will help to create a better classifier.
I've had quite a bit of succes with the middleware library as provided by http://www.threegear.com/. They provide several gestures (including grabbing, pinching and pointing) and 6 DOF handtracking.
You might be interested in this paper & open-source code:
Robust Articulated-ICP for Real-Time Hand Tracking
Code: https://github.com/OpenGP/htrack
Screenshot: http://lgg.epfl.ch/img/codedata/htrack_icp.png
YouTube Video: https://youtu.be/rm3YnClSmIQ
Paper PDF: http://infoscience.epfl.ch/record/206951/files/htrack.pdf

How to align two different pictures in such a way, that they match as close as possible?

I need to automatically align an image B on top of another image A in such a way, that the contents of the image match as good as possible.
The images can be shifted in x/y directions and rotated up to 5 degrees on z, but they won't be distorted (i.e. scaled or keystoned).
Maybe someone can recommend some good links or books on this topic, or share some thoughts how such an alignment of images could be done.
If there wasn't the rotation problem, then I could simply try to compare rows of pixels with a brute-force method until I find a match, and then I know the offset and can align the image.
Do I need AI for this?
I'm having a hard time finding resources on image processing which go into detail how these alignment-algorithms work.
So what people often do in this case is first find points in the images that match then compute the best transformation matrix with least squares. The point matching is not particularly simple and often times you just use human input for this task, you have to do it all the time for calibrating cameras. Anyway, if you want to fully automate this process you can use feature extraction techniques to find matching points, there are volumes of research papers written on this topic and any standard computer vision text will have a chapter on this. Once you have N matching points, solving for the least squares transformation matrix is pretty straightforward and, again, can be found in any computer vision text, so I'll assume you got that covered.
If you don't want to find point correspondences you could directly optimize the rotation and translation using steepest descent, trouble is this is non-convex so there are no guarantees you will find the correct transformation. You could do random restarts or simulated annealing or any other global optimization tricks on top of this, that would most likely work. I can't find any references to this problem, but it's basically a digital image stabilization algorithm I had to implement it when I took computer vision but that was many years ago, here are the relevant slides though, look at "stabilization revisited". Yes, I know those slides are terrible, I didn't make them :) However, the method for determining the gradient is quite an elegant one, since finite difference is clearly intractable.
Edit: I finally found the paper that went over how to do this here, it's a really great paper and it explains the Lucas-Kanade algorithm very nicely. Also, this site has a whole lot of material and source code on image alignment that will probably be useful.
for aligning the 2 images together you have to carry out image registration technique.
In matlab, write functions for image registration and select your desirable features for reference called 'feature points' using 'control point selection tool' to register images.
Read more about image registration in the matlab help window to understand properly.

Resources