PCA in OpenCV and how to prepare data? - opencv

I just want to clarify something about PCA in OpenCV. Suppose, I have two rows of data (A, B).
A 3 8 7
B 2 4 5
If I wanted to create a PCA model in OpenCV, what must I do to the data? Do I have to subtract the means (e.g. subtract the mean of A from its data points) or does the PCA function do this?
Someone said that OpenCV PCA expects the data to be normalised (between 0 and 1). If so, how do I normalise?
Hope someone can clarify this for me as PCA in OpenCV is very badly documented on the Net.
Cheers...

The data for PCA in OpenCV needs not to be normalized. But if you already have the mean (from some previuos calculations), you can send it to the PCACompute() function to speed it up.
OpenCV refman:
PCACompute(data[, mean[, eigenvectors[, maxComponents ]]]) !mean, eigenvectors
Parameters
data – Input samples stored as the matrix rows or as the matrix columns.
mean – Optional mean value. If the matrix is empty ( noArray() ), the mean is computed
from the data.
There is a good article on data normalization on Wikipedia.
For complete documentation check out the opencv.pdf file that should be in the doc/ folder of your instalation. On some versions it is named opencv2refman.pdf
And also try to find the book "Learning OpenCV", by Gary Bradsky, it's more than well exlained.

Related

OpenCV Principal Component Analysis terminology - what actually is a 'sample'?

I'm working with Principal Component Analysis (PCA) in openCV. The constructor inputs for the case I'm interested in are:
PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
Regarding the InputArray 'data' the documents state the appropriate flags should be:
CV_PCA_DATA_AS_ROW indicates that the input samples are stored as
matrix rows.
CV_PCA_DATA_AS_COL indicates that the input samples are
stored as matrix columns.
My question pertains to the use of the term 'samples' in that I'm not sure what a sample is in this context.
For example let's say I have 4 sets of data and for the sake of illustration let's label them A-D. Now each set A through D has 8 elements. They are then set up in the Mat variable I'll use as InputArray as follows:
The question is, which is it:
My sets are samples?
My data elements are samples?
Another way of asking:
Do I have 4 samples (CV_PCA_DATA_AS_COL)
Or do I have 4 sets of 8 samples (CV_PCA_DATA_AS_ROW)
?
As a guess, I'd choose CV_PCA_DATA_AS_COL (i.e. I have 4 samples) - but that's just where my head is at... Until I learn the correct terminology it seems the word 'sample' could apply to either reasoning.
Ugh...
So the answer was found by reversing the logic behind the documentation for the PCA::project step...
Mat PCA::project(InputArray vec)
vec – input vector(s); must have the same dimensionality and the same
layout as the input data used at PCA phase, that is, if
CV_PCA_DATA_AS_ROW are specified, then vec.cols==data.cols (vector
dimensionality)
i.e. 'sample' is equivalent to 'set', and the elements are the 'dimension'.
(and my guess was correct :)

libsvm not giving support vectors / no support vectors

I am using jlibsvm to do SVM for regression .My data set is very small (42 samples) . When I use the dataset to create the model using epsilon SVR with sigmoid kernel then no support vectors are generated.
This is what I get in my model file :
svm_type epsilon_svr
kernel_type sigmoid
gamma 0.02380952425301075
coef0 0.0
label
rho -66.42803
total_sv 0
probA -1.0
SV
When I use some other data set on the libsvm website I get a model file with support vectors fine.
Can someone please suggest why no support vectors are being generated for my data set ?
My data set file is formatted right so no issues there...
This could mean that the best found classification, given your data and the hyperparameters, is to assign the same label to all samples.
Are your samples unbalanced? What's the number of positive and negative samples? You might want to try to add a weighting to positive/negative samples to account for that
It could also be the samples are hard to separate given their structure and the kernel type. Have you tried a different structure?
With only 42 data samples, maybe you could add them to your question and get better answers.

OpenCV 2.4.3 PCA class - when number of samples is less than number of dimensions

I'm trying to use the PCA class in OpenCv to perform the principal component analysis operation in my C++ application . I'm new to OpenCV and I'm having a problem So I wish if someone could help.
I'm trying a demo Example on both Matlab and the PCA class to check the answers
when I'm using 2*10 data array, and the parameter (CV_PCA_DATA_AS_COL), here I'm having two dimensions so I'm expecting to have 2 Eigenvectors each has 2 elements, and this worked fine as expected with the same results as Matlab.
But while using 10*2 data array (generally when number of samples is less than number of dimension), I get (2*10) array of eiegnvectors. I.e: 10 eigenvectors with 2 elements each. This is not expected and it's not the result given by Matlab (Matlab give 10*10 matrix of eigenvectors).
I don't know why I'm having those results and due this I can't project the Data on principal components in my application, any help?
P.S : The code I used :
Mat Mean ;
Mat H(10, 2, CV_32F); // then the matrix is filled by data
PCA pca(H,Mean,CV_PCA_DATA_AS_COL,0) ;
pca.operator()(H,Mean,CV_PCA_DATA_AS_COL,0) ;
cout<<pca.eigenvectors.rows // gives 2 instead of 10
cout<<pca.eigenvectors.cols // gives 10
I'd state it as follows:
If the number of samples is less than the data dimension then the number of retained components will be clamped at the number of samples.
We did 3x3 PCA for mechanics subject at uni, also some non-linear control algorithms used similar approaches - my memory is foggy, but it may have something to do with assumptions regarding psuedo-inverses and non-square matrices...
Once you delve into the theory - websearch 'pca with less samples than dimensions' - it gets messy fast!

OpenCV + HOG +SVM: help needed with SVM single feature vector

I try to implement a people detecting system based on SVM and HOG using OpenCV2.3. But I got stucked.
I came this far:
I can compute HOG values from an image database and then I calculate with LIBSVM the SVM vectors, so I get e.g. 1419 SVM vectors with 3780 values each.
OpenCV just wants one feature vector in the method hog.setSVMDetector(). Therefore I have to calculate one feature vector from my 1419 SVM vectors, that LIBSVM has calculated.
I found one hint, how to calculate this single feature vector: link
“The detecting feature vector at component i (where i is in the range e.g. 0-3779) is built out of the sum of the support vectors at i * the alpha value of that support vector, e.g.
det[i] = sum_j (sv_j[i] * alpha[j]) , where j is the number of the support vector, i
is the number of the components of the support vector.”
According to this, my routine works this way:
I take the first element of my first SVM vector, multiply it with the alpha value and add it with the first element of the second SVM vector that has been multiplied with alpha value, …
But after summing up all 1419 elements I get quite high values:
16.0657, -0.351117, 2.73681, 17.5677, -8.10134,
11.0206, -13.4837, -2.84614, 16.796, 15.0564,
8.19778, -0.7101, 5.25691, -9.53694, 23.9357,
If you compare them, to the default vector in the OpenCV sample peopledetect.cpp (and hog.cpp in the OpenCV source)
0.05359386f, -0.14721455f, -0.05532170f, 0.05077307f,
0.11547081f, -0.04268804f, 0.04635834f, -0.05468199f, 0.08232084f,
0.10424068f, -0.02294518f, 0.01108519f, 0.01378693f, 0.11193510f,
0.01268418f, 0.08528346f, -0.06309239f, 0.13054633f, 0.08100729f,
-0.05209739f, -0.04315529f, 0.09341384f, 0.11035026f, -0.07596218f,
-0.05517511f, -0.04465296f, 0.02947334f, 0.04555536f,
you see, that the default vector values are in the boundaries between –1 and +1, but my values exceed them far.
I think, my single feature vector routine needs some adjustment, any ideas?
Regards,
Christoph
The aggregated vector's values do look high.
I used the loadSVMfromModelFile() located in http://lnx.mangaitalia.net/trainer/main.cpp
I had to remove svinstr.sync(); from the code since it caused losing parts of the lines and getting wrong results.
I don't know much about the rest of the file, I only used this function.

OpenCV CalcPca input data

I am trying to implement a face recognition training function with opencv, using "eigenfaces". I have the sample data, but I can't find any info on CalcPCA function arguments. All I know is that it takes data matrix, reference to average eigenface matrix, reference to eigen vector, and reference to eigen values matrix.
My question is, how should I pass the data from several test image matrices into the first argument of CalcPCA so I can get the average eigenface and vectors?
This seems to be a good example: http://tech.groups.yahoo.com/group/OpenCV/message/47627
You can do in this way:
You have for example 10 Mat where each math represent an image.
Now you can create a new Mat that you can put into this new Mat the previus 10 Mat.
At this point use Mat.pushback(...) to insert the 10 Mat.
Hope this is helpful for you.
Marco

Resources