libsvm not giving support vectors / no support vectors - machine-learning

I am using jlibsvm to do SVM for regression .My data set is very small (42 samples) . When I use the dataset to create the model using epsilon SVR with sigmoid kernel then no support vectors are generated.
This is what I get in my model file :
svm_type epsilon_svr
kernel_type sigmoid
gamma 0.02380952425301075
coef0 0.0
label
rho -66.42803
total_sv 0
probA -1.0
SV
When I use some other data set on the libsvm website I get a model file with support vectors fine.
Can someone please suggest why no support vectors are being generated for my data set ?
My data set file is formatted right so no issues there...

This could mean that the best found classification, given your data and the hyperparameters, is to assign the same label to all samples.
Are your samples unbalanced? What's the number of positive and negative samples? You might want to try to add a weighting to positive/negative samples to account for that
It could also be the samples are hard to separate given their structure and the kernel type. Have you tried a different structure?
With only 42 data samples, maybe you could add them to your question and get better answers.

Related

what's meaning of function predict's returned value in OpenCV?

I use function predict in opencv to classify my gestures.
svm.load("train.xml");
float ret = svm.predict(mat);//mat is my feature vector
I defined 5 labels (1.0,2.0,3.0,4.0,5.0), but in fact the value of ret are (0.521220207,-0.247173533,-0.127723947······)
So I am confused about it. As Opencv official document, the function returns a class label (classification) in my case.
update: I don't still know why to appear this result. But I choose new features to train models and the return value of predict function is what I defined during train phase (e.g. 1 or 2 or 3 or etc).
During the training of an SVM you assign a label to each class of training data.
When you classify a sample the returned result will match up with one of these labels telling you which class the sample is predicted to fall into.
There's some more documentation here which might help:
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
With Support Vector Machines (SVM) you have a training function and a prediction one. The training function is to train your data and save those informations on an xml file (it facilitates the prediction process in case you use a huge number of training data and you must do the prediction function in another project).
Example : 20 images per class in your case : 20*5=100 training images,each image is associated with a label of its appropriate class and all these informations are stocked in train.xml)
For the prediction function , it tells you what's label to assign to your test image according to your training DATA (the hole work you did in training process). Your prediction results might be good and might be bad , it's all about your training data I think.
If you want try to calculate the error rate for your classifier to see how much it can give good results or bad ones.

libSVM giving highly inaccurate predictions even for the file that was used to train it

here is the deal.
I am trying to make an SVM based POS tagger.
The feature vectors for the SVM was created with the help of format converters.
Now here is a screenshot of the training file that I am using.
http://tinypic.com/r/n4fn2r/8
I have 25 labels for various POS tags. when i use the java implementation or the command line tools for prediction i get the following results.
http://tinypic.com/r/2dtw5ky/8
I have tried with all the kernels available but it gave more or less the same results.
This is happening even when the training file is used as the testing file.
please help me out here..!!
P.S. I cannot share more than two links. Thus here is a snippet of the model file
svm_type c_svc
kernel_type rbf
gamma 0.000548546
nr_class 25
total_sv 431
rho -0.929467 1.01073 1.0531 1.03472 1.01585 0.953263 1.03027 -0.921365 0.984535 1.02796 1.01266 1.03374 0.949463 0.977925 0.986551 -0.920912 0.940926 -0.955562 0.975386 -0.981959 -0.884042 0.0516955 -0.980884 -0.966095 0.995091 1.023 1.01489 1.00308 0.948314 1.01137 -0.845876 0.968034 1.0076 1.00064 1.01335 0.942633 0.965703 0.979212 -0.861236 0.935055 -0.91739 0.970223 -0.97103 0.0743777 0.970321 -0.971215 -0.931582 0.972377 0.958193 0.931253 0.825797 0.954894 -0.972884 -0.941726 0.945077 0.922366 0.953999 -1.00503 0.840985 0.882229 -0.961742 0.791631 -0.984971 0.855911 -0.991528 -0.951211 -0.962096 -0.99213 -0.99708 -0.957557 -0.308987 -0.455442 -0.94881 -0.995319 -0.974945 -0.964637 -0.902152 -0.955258 -1.05287 -1.00614 -0.
update
Just trained the SVM with svm type as c-SVC and kernel type as linear. Which gave a non-zero(although very poor) accuracy.
As mentioned by #Pedrom, parameter choice is absolutely crucial when training SVMs. I suggest you have a look at this practical guide. Also, 431 words is nowhere near enough to train a 25-class model. You will definitely need more data.
That said, 0% accuracy is indeed odd. Can you please show us the commands you are using to train and evaluate the model?

Normalizing feature values for SVM

I've been playing with some SVM implementations and I am wondering - what is the best way to normalize feature values to fit into one range? (from 0 to 1)
Let's suppose I have 3 features with values in ranges of:
3 - 5.
0.02 - 0.05
10-15.
How do I convert all of those values into range of [0,1]?
What If, during training, the highest value of feature number 1 that I will encounter is 5 and after I begin to use my model on much bigger datasets, I will stumble upon values as high as 7? Then in the converted range, it would exceed 1...
How do I normalize values during training to account for the possibility of "values in the wild" exceeding the highest(or lowest) values the model "seen" during training? How will the model react to that and how I make it work properly when that happens?
Besides scaling to unit length method provided by Tim, standardization is most often used in machine learning field. Please note that when your test data comes, it makes more sense to use the mean value and standard deviation from your training samples to do this scaling. If you have a very large amount of training data, it is safe to assume they obey the normal distribution, so the possibility that new test data is out-of-range won't be that high. Refer to this post for more details.
You normalise a vector by converting it to a unit vector. This trains the SVM on the relative values of the features, not the magnitudes. The normalisation algorithm will work on vectors with any values.
To convert to a unit vector, divide each value by the length of the vector. For example, a vector of [4 0.02 12] has a length of 12.6491. The normalised vector is then [4/12.6491 0.02/12.6491 12/12.6491] = [0.316 0.0016 0.949].
If "in the wild" we encounter a vector of [400 2 1200] it will normalise to the same unit vector as above. The magnitudes of the features is "cancelled out" by the normalisation and we are left with relative values between 0 and 1.

PCA in OpenCV and how to prepare data?

I just want to clarify something about PCA in OpenCV. Suppose, I have two rows of data (A, B).
A 3 8 7
B 2 4 5
If I wanted to create a PCA model in OpenCV, what must I do to the data? Do I have to subtract the means (e.g. subtract the mean of A from its data points) or does the PCA function do this?
Someone said that OpenCV PCA expects the data to be normalised (between 0 and 1). If so, how do I normalise?
Hope someone can clarify this for me as PCA in OpenCV is very badly documented on the Net.
Cheers...
The data for PCA in OpenCV needs not to be normalized. But if you already have the mean (from some previuos calculations), you can send it to the PCACompute() function to speed it up.
OpenCV refman:
PCACompute(data[, mean[, eigenvectors[, maxComponents ]]]) !mean, eigenvectors
Parameters
data – Input samples stored as the matrix rows or as the matrix columns.
mean – Optional mean value. If the matrix is empty ( noArray() ), the mean is computed
from the data.
There is a good article on data normalization on Wikipedia.
For complete documentation check out the opencv.pdf file that should be in the doc/ folder of your instalation. On some versions it is named opencv2refman.pdf
And also try to find the book "Learning OpenCV", by Gary Bradsky, it's more than well exlained.

OpenCV + HOG +SVM: help needed with SVM single feature vector

I try to implement a people detecting system based on SVM and HOG using OpenCV2.3. But I got stucked.
I came this far:
I can compute HOG values from an image database and then I calculate with LIBSVM the SVM vectors, so I get e.g. 1419 SVM vectors with 3780 values each.
OpenCV just wants one feature vector in the method hog.setSVMDetector(). Therefore I have to calculate one feature vector from my 1419 SVM vectors, that LIBSVM has calculated.
I found one hint, how to calculate this single feature vector: link
“The detecting feature vector at component i (where i is in the range e.g. 0-3779) is built out of the sum of the support vectors at i * the alpha value of that support vector, e.g.
det[i] = sum_j (sv_j[i] * alpha[j]) , where j is the number of the support vector, i
is the number of the components of the support vector.”
According to this, my routine works this way:
I take the first element of my first SVM vector, multiply it with the alpha value and add it with the first element of the second SVM vector that has been multiplied with alpha value, …
But after summing up all 1419 elements I get quite high values:
16.0657, -0.351117, 2.73681, 17.5677, -8.10134,
11.0206, -13.4837, -2.84614, 16.796, 15.0564,
8.19778, -0.7101, 5.25691, -9.53694, 23.9357,
If you compare them, to the default vector in the OpenCV sample peopledetect.cpp (and hog.cpp in the OpenCV source)
0.05359386f, -0.14721455f, -0.05532170f, 0.05077307f,
0.11547081f, -0.04268804f, 0.04635834f, -0.05468199f, 0.08232084f,
0.10424068f, -0.02294518f, 0.01108519f, 0.01378693f, 0.11193510f,
0.01268418f, 0.08528346f, -0.06309239f, 0.13054633f, 0.08100729f,
-0.05209739f, -0.04315529f, 0.09341384f, 0.11035026f, -0.07596218f,
-0.05517511f, -0.04465296f, 0.02947334f, 0.04555536f,
you see, that the default vector values are in the boundaries between –1 and +1, but my values exceed them far.
I think, my single feature vector routine needs some adjustment, any ideas?
Regards,
Christoph
The aggregated vector's values do look high.
I used the loadSVMfromModelFile() located in http://lnx.mangaitalia.net/trainer/main.cpp
I had to remove svinstr.sync(); from the code since it caused losing parts of the lines and getting wrong results.
I don't know much about the rest of the file, I only used this function.

Resources