I hope someone will be able to help me.
I have pairs of black and white images that resulted from scanning texts with a large scanner (resulting files are up 500M). The texts scanned are nearly identical, and I need to check if there are any substantial differences.
Obviously I can not compare pixel by pixel since the same image scanned into a bmp will give me a slightly different result every time I scan.
Does anyone know of any library - open source or commertial - that I can buy or download, and build a .NET application around it.
Thank you in advance for your help.
Helen.
Use perceptive hashing. It checks if two images are similar.
You can also compute feature descriptor using one of the many algorithms available in open cv and just compare the vector distances. Consider images as same if the distanced is below some threshold.
You can try GIST, SURF, SIFT, etc. (Some are scale and rotation invariant also).
If you're working with text only, you could OCR both images and compare the extracted text.
Related
I'm looking for a program that will enable me to quantity the difference between images in an image sequence over time.
We are hoping to use timelapse images to measure the activity of tadpoles by comparing how the images change over time. Tracking the movement of individuals isn’t necessary. The tadpoles are dark and the background of the aquarium is light, however the background isn’t uniform and some of the decor items like dark rocks and foliage make it so that all the tadpoles aren’t visible at all times.
Basically need a program that will allow me to quantity the differences/motion detected in an image sequence (i.e 209 images) and produce data that can be exported...
Any and all suggestions appreciated!!
Your question is rather vague and you don't supply any images or real indication of what you expect as results, so my answer will not be as thorough as it might otherwise be.
You don't mention any tools you are familiar with, but my recommendation would be Python and OpenCV. Alternatives are probably scikit-image, Python Wand.
In general, when trying to detect movement across a series of images, you would:
try and work out what the background is
look for movement by sutracting, or differencing, frames from the background
clean up the difference image
identify objects - maybe by shape or size or colour
maybe track objects
produce statistics
As regards working out the background, I did an example here by finding the median pixel across all images at each location in the images. There is also an OpenCV tutorial here.
As regards cleaning up images, you can probably remove noise in the background subtraction with a small median filter, say 3x3 or 5x5 depending on the resolution of your images.
As regards detecting tadpoles, you will probably want to use OpenCV findContours() and filter by size, or colour, or circularity. There are some fairly decent tutorials on PyImageSearch. There is also an ImageMagick "Connected Component" analysis to find a tennis player that I did here.
I want to capture one frame with all the frames stored in a database. This frame is captured by the mobile phone, while the database is with the original ones. I have been searching most days in order to find a good method to compare them, taking into account that they have not the same resolution, colors and luminance, etc. Does anyone have an idea?
I have already done the preprocessing step of the captured frame to be as faithful as possible than the original one with C++ and the OpenCV library. But then, I do not know what can be a good feature to compare them or not.
Any comment will be very helpful, thank you!
EDIT: I implemented an algorithm which compares the difference between the two images resized to 160x90, in grayscale and quantized. The results are the following:
The mean value of the image difference is 13. However, if I use two completely different images, the mean value of the image difference is 20. So, I do not know if this measure can be improved on some manner in order to have a better margin for the matching.
Thanks for the help in advance.
Cut the color depth from 24-bits per pixel (or whatever) to 8 or 16 bits per pixel. You may be able use a posterize function for this. Then resize both images to a small size (maybe 16x16 or 100x100, depending on your images), and then compare. This should match similar images fairly closely. It will not take into account different rotation and locations of objects in the image.
I am trying to compare two mono-chrome, basic hand drawn images, captured electronically. The scale may be different but the essences of the image is the same. I want to compare one hand drawn image to a save library of images and get a relative score of how similar they are. Think of several basic geometric shapes, lines, and curves that make up a drawing.
I have tried several techniques without much luck. Pixel based comparisons are too exact. I have tried scaling and cropping images and that did not get accurate results.
I have tried OpenCV with C# and have had a little success. I have experimented with SURF and it works for a few images, but not others that the eye can tell are very similar.
So now my question: Are there any examples of using openCV or commercial software that can support comparing drawings that are not exact? I prefer C# but I am open to any solutions.
Thanks in advance for any guidance.
(I have been working on this for over a month and have searched the internet and Stack Overflow without success. I of course could have missed something)
You need to extract features from these images and after that using a basic euclidean distance would be enough to calculate similarity. But hand writtend drawn thins are not easy to extract features. For example, companies that work on face recognition generally have much less accuracy on drawn face portraits.
I have a suggestion for you. For a machine learning homework, one of my friends got the signature recognition assingment. I do not fully know how he did it with a high accuracy, but I know feature extraction part. Firtstly he converted it to binary image. And than he calculated the each row's black pixel count. Than he used that features to train a NN or etc.
So you can use this similar approach to extract features. Than use a euclidean distance to calculate similarities.
I have a collection of about 3000 images that were taken from camera suspended from a weather balloon in flight. The camera is pointing a different direction in each image but is generally aimed down, so all the images share a significant area (40-50%) with the previous image but at a slightly different scale and rotated an arbitrary (and not consistent) amount. The image metadata includes a timestamp, so I do know with certainty the correct order of images and the elapsed time between each.
I want to process these images into a single video. If I simply string them together it will be great for making people seasick, but won't really capture the amazingness of the set :)
The specific part I need help with is finding the rotation of the image from the previous image. Is there a library somewhere that can identify regions of overlap between two images when the images themselves are rotated relative to each other? If I can find 2-3 common points (or more), I can do the remaining calculations to determine the amount of rotation and the offset so I can put them together correctly. Alternately, if there is a library that calculates both of those things for me, that would be even better.
I can do this in any language, with a slight preference for either Java or Python. The data is in Hadoop, so Java is the most natural language, but I can use scripting languages as well if necessary.
Since I'm new to image processing, I don't even know where to start. Any help is greatly appreciated!
For a problem like this you could look into SIFT. This algorithm detects local features in images. OpenCV has an implementation of it, you can read about it here.
You could also try SURF, which is a similar type of algorithm. OpenCV also has this implemented, you can read about that here.
The situation is kind of unique from anything I have been able to find asked already, and is as follows: If I took a photo of two similar images, I'd like to be able to highlight the differing features in the two images. For example the following two halves of a children's spot the difference game:
The differences in the images will be bits missing/added and/or colour change, and the type of differences which would be easily detectable from the original image files by doing nothing cleverer than a pixel-by-pixel comparison. However the fact that they're subject to the fluctuations of light and imprecision of photography, I'll need a far more lenient/clever algorithm.
As you can see, the images won't necessarily line up perfectly if overlaid.
This question is tagged language-agnostic as I expect answers that point me towards relevant algorithms, however I'd also be interested in current implementations if they exist, particularly in Java, Ruby, or C.
The following approach should work. All of these functionalities are available in OpenCV. Take a look at this example for computing homographies.
Detect keypoints in the two images using a corner detector.
Extract descriptors (SIFT/SURF) for the keypoints.
Match the keypoints and compute a homography using RANSAC, that aligns the second image to the first.
Apply the homography to the second image, so that it is aligned with the first.
Now simply compute the pixel-wise difference between the two images, and the difference image will highlight everything that has changed from the first to the second.
My general approach would be to use an optical flow to align both images and perform a pixel by pixel comparison once they are aligned.
However, for the specifics, standard optical flows (OpenCV etc.) are likely to fail if the two images differ significantly like in your case. If that indeed fails, there are recent optical flow techniques that are supposed to work even if the images are drastically different. For instance, you might want to look at the paper about SIFT flows by Ce Liu et al that addresses this problem with sparse correspondences.