machine learning - svm feature fusion techique - machine-learning

for my final thesis i am trying to build up an 3d face recognition system by combining color and depth information. the first step i did, is to realign the data-head to an given model-head using the iterative closest point algorithm. for the detection step i was thinking about using the libsvm. but i dont understand how to combine the depth and the color information to one feature vector? they are dependent information (each point consist of color (RGB), depth information and also scan quality).. what do you suggest to do? something like weighting?
edit:
last night i read an article about SURF/SIFT features i would like to use them! could it work? the concept would be the following: extracting this features out of the color image and the depth image (range image), using each feature as a single feature vector for the svm?

Concatenation is indeed a possibility. However, as you are working on 3d face recognition you should have some strategy as to how you go about it. Rotation and translation of faces will be hard to recognize using a "straightforward" approach.
You should decide whether you attempt to perform a detection of the face as a whole, or of sub-features. You could attempt to detect rotation by finding some core features (eyes, nose, etc).
Also, remember that SVMs are inherently binary (i.e. they separate between two classes). Depending on your exact application you will very likely have to employ some multi-class strategy (One-against-all or One-against-many).
I would recommend doing some literature research to see how others have attacked the problem (a google search will be a good start).

It sounds simple, but you can simply concatenate the two vectors into one. Many researchers do this.

What you arrived at is an important open problem. Yes, there are some ways to handle it, as mentioned here by Eamorr. For example you can concatenate and do PCA (or some non linear dimensionality reduction method). But it is kind of hard to defend the practicality of doing so, considering that PCA takes O(n^3) time in the number of features. This alone might be unreasonable for data in vision that may have thousands of features.

As mentioned by others, the easiest approach is to simply combine the two sets of features into one.
SVM is characterized by the normal to the maximum-margin hyperplane, where its components specify the weights/importance of the features, such that higher absolute values have a larger impact on the decision function. Thus SVM assigns weights to each feature all on its own.
In order for this to work, obviously you would have to normalize all the attributes to have the same scale (say transform all features to be in the range [-1,1] or [0,1])

Related

Detecting object in an image

currently I am struggling in implementing an algorithm to locate an object in an image. Suppose I have 100 training sets that all have a cat in there and each has the correct coordinate of each cat. My first idea is to create a fixed-sized square and traverse through the image. For each collection of pixels contained in the square, we can use it as a point for Support Vector Machine algorithm.
The problem is that I am not sure how to do that since usually, each point represents each class (has object or has no object) and it usually has a simple d features, while for this case, it has a dx3 matrix as its features (each features has RGB value).
A simple help will be welcome, thanks!
If I have understood your question well, applying machine learning for image Processing and computer vision is a bit different from Other kinds of problems. main difference is that you should somehow overcome the issue of locality and scale. does all kitties always appear in the specific coordinate (x,y) ?! of course not! they can be anywhere in the scene. so how is it possible to give a specific point to SVM for an object? it will not be generalized at all. This is the reason almost all basic operation in computer vision has something to do with convolution operation to extract features independent from their location. A pixel alone carries zero useful information, you need to analyse groups of pixels. there are 2 approach you can take:
classic methods:
use OpenCV to perform noise removal, edge detection, feature extraction using methods like SIFT and feed those features to a model like SVM, not the raw unprocessed pixels. feature extraction means to reach from d features to k more meaningful representation of inputs where usually (k < d) if not always.
Deep Learning:
Convolutional Neural networks(CNNs) Have shed lights on many Computer vision tasks which were far beyond reach until recently and more importantly with frameworks like Keras and tensorflow most problems in computer vision is just programming tasks to be honest and doesn't require much knowledge as one needed before. because (CNNs) extract features themselves and you don't need to do the feature engineering anymore which requires a well educated and knowledgeable person on the task.
so, choose whatever method you see fit for kitty detection =^.^= .

Implementing Face Recognition using Local Descriptors (Unsupervised Learning)

I'm trying to implement a face recognition algorithm using Python. I want to be able to receive a directory of images, and compute pair-wise distances between them, when short distances should hopefully correspond to the images belonging to the same person. The ultimate goal is to cluster images and perform some basic face identification tasks (unsupervised learning).
Because of the unsupervised setting, my approach to the problem is to calculate a "face signature" (a vector in R^d for some int d) and then figure out a metric in which two faces belonging to the same person will indeed have a short distance between them.
I have a face detection algorithm which detects the face, crops the image and performs some basic pre-processing, so the images i'm feeding to the algorithm are gray and equalized (see below).
For the "face signature" part, I've tried two approaches which I read about in several publications:
Taking the histogram of the LBP (Local Binary Pattern) of the entire (processed) image
Calculating SIFT descriptors at 7 facial landmark points (right of mouth, left of mouth, etc.), which I identify per image using an external application. The signature is the concatenation of the square root of the descriptors (this results in a much higher dimension, but for now performance is not a problem).
For the comparison of two signatures, I'm using OpenCV's compareHist function (see here), trying out several different distance metrics (Chi Square, Euclidean, etc).
I know that face recognition is a hard task, let alone without any training, so I'm not expecting great results. But all I'm getting so far seems completely random. For example, when calculating distances from the image on the far right against the rest of the image, I'm getting she is most similar to 4 Bill Clintons (...!).
I have read in this great presentation that it's popular to carry out a "metric learning" procedure on a test set, which should significantly improve results. However it does say in the presentation and elsewhere that "regular" distance measures should also get OK results, so before I try this out I want to understand why what I'm doing gets me nothing.
In conclusion, my questions, which I'd love to get any sort of help on:
One improvement I though of would be to perform LBP only on the actual face, and not the corners and everything that might insert noise to the signature. How can I mask out the parts which are not the face before calculating LBP? I'm using OpenCV for this part too.
I'm fairly new to computer vision; How would I go about "debugging" my algorithm to figure out where things go wrong? Is this possible?
In the unsupervised setting, is there any other approach (which is not local descriptors + computing distances) that could work, for the task of clustering faces?
Is there anything else in the OpenCV module that maybe I haven't thought of that might be helpful? It seems like all the algorithms there require training and are not useful in my case - the algorithm needs to work on images which are completely new.
Thanks in advance.
What you are looking for is unsupervised feature extraction - take a bunch of unlabeled images and find the most important features describing these images.
The state-of-the-art methods for unsupervised feature extraction are all based on (convolutional) neural networks. Have look at autoencoders (http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity) or Restricted Bolzmann Machines (RBMs).
You could also take an existing face detector such as DeepFace (https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf), take only feature layers and use distance between these to group similar faces together.
I'm afraid that OpenCV is not well suited for this task, you might want to check Caffe, Theano, TensorFlow or Keras.

need advise on sift feature - is there such thing as a good feature?

I am trying out vlfeat, got huge amount of features from an image database, and I am testing with the ground truth for mean average precision (MAp). Overall, I got roughly 40%. I see that some of the papers got higher MAp, while using techniques very similar to mine; the standard bag of word.
I am currently looking for an answer for obtaining higher MAp for the standard bag of word technique. While I see that there are other implementation such as SURF and what not, let's stick to the standard Lowe's SIFT and the standard bag of word in this question.
So the thing is this, I see that vl_sift got thresholding to allow you to be more strict on feature selection. Currently, I understand that going for higher threshold might net you smaller and more meaningful "good" features list, and possibly reduce some noisy features. "Good" features mean, given the same images with different variation, very similar features are also detected on other images.
However, how high should we go for this thresholding? Sometimes, I see that an image returns no features at all with higher threshold. At first, I was thinking of keep on adjusting the threshold, until I get better MAp. But again, I think it's a bad idea to keep on adjusting just to find the best MAp for the respective database. So my questions are:
While adjusting threshold may decrease numbers of features, does increasing threshold always return a lesser number yet better features?
Are there better approaches to obtain the good features?
What are other factors that can increase the rate of obtaining good features?
Have a look into some of the papers put out in response to the Pascal challenge in recent years. The impression they seem to give me is that standard 'feature detection' methods don't work very well with the Bag of Words technique. This makes sense when you think about it - BoW works by pulling together lots of weak, often unrelated features. It's less about detecting a specific object, but instead recognizing classes of objects and scenes. As such, putting too much emphasis on normal 'key features' can harm more than help.
As such, we see folks using dense grids and even random points as their features. From experience, using one of these methods over Harris corners, LoG, SIFT, MSER, or any of the like, has a great positive impact on performance.
To answer your questions directly:
Yes. From the SIFT api:
Keypoints are further refined by eliminating those that are likely to be unstable, either because they are selected nearby an image edge, rather than an image blob, or are found on image structures with low contrast. Filtering is controlled by the follow:
Peak threshold. This is the minimum amount of contrast to accept a keypoint. It is set by configuring the SIFT filter object by vl_sift_set_peak_thresh().
Edge threshold. This is the edge rejection threshold. It is set by configuring the SIFT filter object by vl_sift_set_edge_thresh().
You can see examples of the two thresholds in action in the 'Detector parameters' section here.
Research suggests features densely selected from the scene yield more descriptive 'words' than those selected using more 'intelligent' methods (eg: SIFT, Harris, MSER). Try your Bag of Words pipeline with vl_feat's DSIFT or PHOW implementation. You should see a great improvement in performance (assuming your 'word' selection and classification steps are tuned well).
After a dense set of feature points, the biggest breakthrough in this field seems to have been the 'Spatial Pyramid' approach. This increases the number of words produced for an image, but provides a location aspect to the features - something inherently lacking in Bag of Words. After that, make sure your parameters are well tuned (which feature descriptor you're using (SIFT, HOG, SURF, etc), how many words are in your vocabulary, what classifier are you using ect.) Then.. you're in active research land. Enjoy =)

Difference between feature detection and object detection

I know that most common object detection involves Haar cascades and that there are many techniques for feature detection such as SIFT, SURF, STAR, ORB, etc... but if my end goal is to recognizes objects doesn't both ways end up giving me the same result? I understand using feature techniques on simple shapes and patterns but for complex objects these feature algorithms seem to work as well.
I don't need to know the difference in how they function but whether or not having one of them is enough to exclude the other. If I use Haar cascading, do I need to bother with SIFT? Why bother?
thanks
EDIT: for my purposes I want to implement object recognition on a broad class of things. Meaning that any cups that are similarly shaped as cups will be picked up as part of class cups. But I also want to specify instances, meaning a NYC cup will be picked up as an instance NYC cup.
Object detection usually consists of two steps: feature detection and classification.
In the feature detection step, the relevant features of the object to be detected are gathered.
These features are input to the second step, classification. (Even Haar cascading can be used
for feature detection, to my knowledge.) Classification involves algorithms
such as neural networks, K-nearest neighbor, and so on. The goal of classification is to find
out whether the detected features correspond to features that the object to be detected
would have. Classification generally belongs to the realm of machine learning.
Face detection, for example, is an example of object detection.
EDIT (Jul. 9, 2018):
With the advent of deep learning, neural networks with multiple hidden layers have come into wide use, making it relatively easy to see the difference between feature detection and object detection. A deep learning neural network consists of two or more hidden layers, each of which is specialized for a specific part of the task at hand. For neural networks that detect objects from an image, the earlier layers arrange low-level features into a many-dimensional space (feature detection), and the later layers classify objects according to where those features are found in that many-dimensional space (object detection). A nice introduction to neural networks of this kind is found in the Wolfram Blog article "Launching the Wolfram Neural Net Repository".
Normally objects are collections of features. A feature tends to be a very low-level primitive thing. An object implies moving the understanding of the scene to the next level up.
A feature might be something like a corner, an edge etc. whereas an object might be something like a book, a box, a desk. These objects are all composed of multiple features, some of which may be visible in any given scene.
Invariance, speed, storage; few reasons, I can think on top of my head. The other method to do would be to keep the complete image and then check whether the given image is similar to glass images you have in your database. But if you have a compressed representation of the glass, it will need lesser computation (thus faster), will need lesser storage and the features tells you the invariance across images.
Both the methods you mentioned are essentially the same with slight differences. In case of Haar, you detect the Haar features then you boost them to increase the confidence. Boosting is nothing but a meta-classifier, which smartly chooses which all Harr features to be included in your final meta-classification, so that it can give a better estimate. The other method, also more or less does this, except that you have more "sophisticated" features. The main difference is that, you don't use boosting directly. You tend to use some sort of classification or clustering, like MoG (Mixture of Gaussian) or K-Mean or some other heuristic to cluster your data. Your clustering largely depends on your features and application.
What will work in your case : that is a tough question. If I were you, I would play around with Haar and if it doesn't work, would try the other method (obs :>). Be aware that you might want to segment the image and give some sort of a boundary around for it to detect glasses.

What's the best approach to recognize patterns in data, and what's the best way to learn more on the topic?

A developer I am working with is developing a program that analyzes images of pavement to find cracks in the pavement. For every crack his program finds, it produces an entry in a file that tells me which pixels make up that particular crack. There are two problems with his software though:
1) It produces several false positives
2) If he finds a crack, he only finds small sections of it and denotes those sections as being separate cracks.
My job is to write software that will read this data, analyze it, and tell the difference between false-positives and actual cracks. I also need to determine how to group together all the small sections of a crack as one.
I have tried various ways of filtering the data to eliminate false-positives, and have been using neural networks to a limited degree of success to group cracks together. I understand there will be error, but as of now, there is just too much error. Does anyone have any insight for a non-AI expert as to the best way to accomplish my task or learn more about it? What kinds of books should I read, or what kind of classes should I take?
EDIT My question is more about how to notice patterns in my coworker's data and identify those patterns as actual cracks. It's the higher-level logic that I'm concerned with, not so much the low-level logic.
EDIT In all actuality, it would take AT LEAST 20 sample images to give an accurate representation of the data I'm working with. It varies a lot. But I do have a sample here, here, and here. These images have already been processed by my coworker's process. The red, blue, and green data is what I have to classify (red stands for dark crack, blue stands for light crack, and green stands for a wide/sealed crack).
In addition to the useful comments about image processing, it also sounds like you're dealing with a clustering problem.
Clustering algorithms come from the machine learning literature, specifically unsupervised learning. As the name implies, the basic idea is to try to identify natural clusters of data points within some large set of data.
For example, the picture below shows how a clustering algorithm might group a bunch of points into 7 clusters (indicated by circles and color):
(source: natekohl.net)
In your case, a clustering algorithm would attempt to repeatedly merge small cracks to form larger cracks, until some stopping criteria is met. The end result would be a smaller set of joined cracks. Of course, cracks are a little different than two-dimensional points -- part of the trick in getting a clustering algorithm to work here will be defining a useful distance metric between two cracks.
Popular clustering algorithms include k-means clustering (demo) and hierarchical clustering. That second link also has a nice step-by-step explanation of how k-means works.
EDIT: This paper by some engineers at Phillips looks relevant to what you're trying to do:
Chenn-Jung Huang, Chua-Chin Wang, Chi-Feng Wu, "Image Processing Techniques for Wafer Defect Cluster Identification," IEEE Design and Test of Computers, vol. 19, no. 2, pp. 44-48, March/April, 2002.
They're doing a visual inspection for defects on silicon wafers, and use a median filter to remove noise before using a nearest-neighbor clustering algorithm to detect the defects.
Here are some related papers/books that they cite that might be useful:
M. Taubenlatt and J. Batchelder, “Patterned Wafer Inspection Using Spatial Filtering for Cluster Environment,” Applied Optics, vol. 31, no. 17, June 1992, pp. 3354-3362.
F.-L. Chen and S.-F. Liu, “A Neural-Network Approach to Recognize Defect Spatial Pattern in Semiconductor Fabrication.” IEEE Trans. Semiconductor Manufacturing, vol. 13, no. 3, Aug. 2000, pp. 366-373.
G. Earl, R. Johnsonbaugh, and S. Jost, Pattern Recognition and Image Analysis, Prentice Hall, Upper Saddle River, N.J., 1996.
Your problem falls in the very broad field of image classification. These types of problems can be notoriously difficult, and at the end of the day, solving them is an art. You must exploit every piece of knowledge you have about the problem domain to make it tractable.
One fundamental issue is normalization. You want to have similarly classified objects to be as similar as possible in their data representation. For example, if you have an image of the cracks, do all images have the same orientation? If not, then rotating the image may help in your classification. Similarly, scaling and translation (refer to this)
You also want to remove as much irrelevant data as possible from your training sets. Rather than directly working on the image, perhaps you could use edge extraction (for example Canny edge detection). This will remove all the 'noise' from the image, leaving only the edges. The exercise is then reduced to identifying which edges are the cracks and which are the natural pavement.
If you want to fast track to a solution then I suggest you first try the your luck with a Convolutional Neural Net, which can perform pretty good image classification with a minimum of preprocessing and noramlization. Its pretty well known in handwriting recognition, and might be just right for what you're doing.
I'm a bit confused by the way you've chosen to break down the problem. If your coworker isn't identifying complete cracks, and that's the spec, then that makes it your problem. But if you manage to stitch all the cracks together, and avoid his false positives, then haven't you just done his job?
That aside, I think this is an edge detection problem rather than a classification problem. If the edge detector is good, then your issues go away.
If you are still set on classification, then you are going to need a training set with known answers, since you need a way to quantify what differentiates a false positive from a real crack. However I still think it is unlikely that your classifier will be able to connect the cracks, since these are specific to each individual paving slab.
I have to agree with ire_and_curses, once you dive into the realm of edge detection to patch your co-developers crack detection, and remove his false positives, it seems as if you would be doing his job. If you can patch what his software did not detect, and remove his false positives around what he has given you. It seems like you would be able to do this for the full image.
If the spec is for him to detect the cracks, and you classify them, then it's his job to do the edge detection and remove false positives. And your job to take what he has given you and classify what type of crack it is. If you have to do edge detection to do that, then it sounds like you are not far from putting your co-developer out of work.
There are some very good answers here. But if you are unable to solve the problem, you may consider Mechanical Turk. In some cases it can be very cost-effective for stubborn problems. I know people who use it for all kinds of things like this (verification that a human can do easily but proves hard to code).
https://www.mturk.com/mturk/welcome
I am no expert by any means, but try looking at Haar Cascades. You may also wish to experiment with the OpenCV toolkit. These two things together do face detection and other object-detection tasks.
You may have to do "training" to develop a Haar Cascade for cracks in pavement.
What’s the best approach to recognize patterns in data, and what’s the best way to learn more on the topic?
The best approach is to study pattern recognition and machine learning. I would start with Duda's Pattern Classification and use Bishop's Pattern Recognition and Machine Learning as reference. It would take a good while for the material to sink in, but getting basic sense of pattern recognition and major approaches of classification problem should give you the direction. I can sit here and make some assumptions about your data, but honestly you probably have the best idea about the data set since you've been dealing with it more than anyone. Some of the useful technique for instance could be support vector machine and boosting.
Edit: An interesting application of boosting is real-time face detection. See Viola/Jones's Rapid Object Detection using a Boosted Cascade of Simple
Features (pdf). Also, looking at the sample images, I'd say you should try improving the edge detection a bit. Maybe smoothing the image with Gaussian and running more aggressive edge detection can increase detection of smaller cracks.
I suggest you pick up any image processing textbook and read on the subject.
Particularly, you might be interested in Morphological Operations like Dilation and Erosion‎, which complements the job of an edge detector. Plenty of materials on the net...
This is an image processing problem. There are lots of books written on the subject, and much of the material in these books will go beyond a line-detection problem like this. Here is the outline of one technique that would work for the problem.
When you find a crack, you find some pixels that make up the crack. Edge detection filters or other edge detection methods can be used for this.
Start with one (any) pixel in a crack, then "follow" it to make a multipoint line out of the crack -- save the points that make up the line. You can remove some intermediate points if they lie close to a straight line. Do this with all the crack pixels. If you have a star-shaped crack, don't worry about it. Just follow the pixels in one (or two) directions to make up a line, then remove these pixels from the set of crack pixels. The other legs of the star will recognized as separate lines (for now).
You might perform some thinning on the crack pixels before step 1. In other words, check the neighbors of the pixels, and if there are too many then ignore that pixel. (This is a simplification -- you can find several algorithms for this.) Another preprocessing step might be to remove all the lines that are too thin or two faint. This might help with the false positives.
Now you have a lot of short, multipoint lines. For the endpoints of each line, find the nearest line. If the lines are within a tolerance, then "connect" the lines -- link them or add them to the same structure or array. This way, you can connect the close cracks, which would likely be the same crack in the concrete.
It seems like no matter the algorithm, some parameter adjustment will be necessary for good performance. Write it so it's easy to make minor changes in things like intensity thresholds, minimum and maximum thickness, etc.
Depending on the usage environment, you might want to allow user judgement do determine the questionable cases, and/or allow a user to review the all the cracks and click to combine, split or remove detected cracks.
You got some very good answer, esp. #Nate's, and all the links and books suggested are worthwhile. However, I'm surprised nobody suggested the one book that would have been my top pick -- O'Reilly's Programming Collective Intelligence. The title may not seem germane to your question, but, believe me, the contents are: one of the most practical, programmer-oriented coverage of data mining and "machine learning" I've ever seen. Give it a spin!-)
It sounds a little like a problem there is in Rock Mechanics, where there are joints in a rock mass and these joints have to be grouped into 'sets' by orientation, length and other properties. In this instance one method that works well is clustering, although classical K-means does seem to have a few problems which I have addressed in the past using a genetic algorithm to run the interative solution.
In this instance I suspect it might not work quite the same way. In this case I suspect that you need to create your groups to start with i.e. longitudinal, transverse etc. and define exactly what the behviour of each group is i.e. can a single longitudinal crack branch part way along it's length, and if it does what does that do to it's classification.
Once you have that then for each crack, I would generate a random crack or pattern of cracks based on the classification you have created. You can then use something like a least squares approach to see how closely the crack you are checking fits against the random crack / cracks you have generated. You can repeat this analysis many times in the manner of a Monte-Carlo analysis to identify which of the randomly generated crack / cracks best fits the one you are checking.
To then deal with the false positives you will need to create a pattern for each of the different types of false positives i.e. the edge of a kerb is a straight line. You will then be able to run the analysis picking out which is the most likely group for each crack you analyse.
Finally, you will need to 'tweak' the definition of different crack types to try and get a better result. I guess this could either use an automated approach or a manual approach depending on how you define your different crack types.
One other modification that sometimes helps when I'm doing problems like this is to have a random group. By tweaking the sensitivity of a random group i.e. how more or less likely a crack is to be included in the random group, you can sometimes adjust the sensitivty of the model to complex patterns that don't really fit anywhere.
Good luck, looks to me like you have a real challenge.
You should read about data mining, specially pattern mining.
Data mining is the process of extracting patterns from data. As more data are gathered, with the amount of data doubling every three years, data mining is becoming an increasingly important tool to transform these data into information. It is commonly used in a wide range of profiling practices, such as marketing, surveillance, fraud detection and scientific discovery.
A good book on the subject is Data Mining: Practical Machine Learning Tools and Techniques
(source: waikato.ac.nz) ](http://www.amazon.com/Data-Mining-Ian-H-Witten/dp/3446215336 "ISBN 0-12-088407-0")
Basically what you have to do is apply statistical tools and methodologies to your datasets. The most used comparison methodologies are Student's t-test and the Chi squared test, to see if two unrelated variables are related with some confidence.

Resources