I have a working code for template matching. But it only works if the input image is converted into grayscale. Is it possible to do template matching considering the template color as well that needs to be found in the given image?
inputImg = cv2.imread("location")
template = cv2.imread("location")
Yes, you can do it but why?
The idea of converting to the grey-scale is to apply the selected edge-detection algorithm to find the features of the input image.
Since you are working the features the possibility of finding the template image in the original image will be higher. As a result, converting to grey-scale has two advantages. Accuracy and computational complexity.
The matchTemplate method is also working for the RGB images. Now you need to find the image characteristic for 3 different channels. Yet you are not sure about whether your features robust or not, since most edge-detection algorithms are designed for the grey-scale images.
Related
I have 10,000 examples 20x20 png image (binary image) about triangle. My mission is build program, which predict new image is whether triangle. I think I should convert these image to 400 features example, but I don't know how convert fastest.
Can you show me the way?
Here are a image .
Your question is too broad as you dont specify which technologies you are using , but in general you need to create a vector from an array , that depends on your tools , for example if you use python(and the numpy library) you could use flatten().
image_array.flatten();
If you want to do it manually you just need to move every row to a single row.
The previous answer is correct. Yet I want to add something to it:
The example image that you provided is noisy. This is rather problematic as you are working with only binary images. Therefore I want to suggest preprocessing, such as gaussian filter or edge detection. Denoising will improve your clustering algorithms accuracy stronlgy (to my knowledge).
One important question:
What are the other pictures showing? Do you have to seperate triangles from circles? You will get much better answers if you provide more information.
Anyhow, my key message is: Preprocessing is vital for image-processing.
I'm looking for a possibility to convert raster images to vector data using OpenCV. There I found a function cv::findContours() which seems to be a bit primitive (more probably I did not understand it fully):
It seems to use b/w images only (no greyscale and no coloured images) and does not seem to accept any filtering/error suppresion parameters that could be helpful in noisy images, to avoid very short vector lines or to avoid uneven polylines where one single, straight line would be the better result.
So my question: is there a OpenCV possibility to vectorise coloured raster images where the colour-information is assigned to the resulting polylinbes afterwards? And how can I apply noise reduction and error suppression to such a algorithm?
Thanks!
If you want to raster image by color than I recommend you to clusterize image on some group of colors (or quantalize it) and after this extract contours of each color and convert to needed format. There are no ready vectorizing methods in OpenCV.
What's the best set of image preprocessing operations to apply to images for text recognition in EmguCV?
I've included two sample images here.
Applying a low or high pass filter won't be suitable, as the text may be of any size. I've tried median and bilateral filters, but they don't seem to affect the image much.
The ideal result would be a binary image with all the text white, and most of the rest black. This image would then be sent to the OCR engine.
Thanks
There's nothing like the best set. Keep in mind that digital images can be acquired by different capture devices and each device can embed its own preprocessing system (filters) and other characteristics that can drastically change the image and even add noises to them. So every case would have to be treated (preprocessed) differently.
However, there are commmon operations that can be used to improve the detection, for instance, a very basic one would be to convert the image to grayscale and apply a threshold to binarize the image. Another technique I've used before is the bounding box, which allows you to detect the text region. To remove noises from images you might be interested in erode/dilate operations. I demonstrate some of these operations on this post.
Also, there are other interesting posts about OCR and OpenCV that you should take a look:
Simple Digit Recognition OCR in OpenCV-Python
Basic OCR in OpenCV
Now, just to show you a simple approach that can be used with your sample image, this is the result of inverting the color and applying a threshold:
cv::Mat new_img = cv::imread(argv[1]);
cv::bitwise_not(new_img, new_img);
double thres = 100;
double color = 255;
cv::threshold(new_img, new_img, thres, color, CV_THRESH_BINARY);
cv::imwrite("inv_thres.png", new_img);
Try morphological image processing. Have a look at this. However, it works only on binary images - so you will have to binarize the image( threshold?). Although, it is simple, it is dependent on font size, so one structure element will not work for all font sizes. If you want a generic solution, there are a number of papers for text detection in images - A search of this term in google scholar should provide you with some useful publications.
I have an image of the target logo that I am trying to use to find target logos in other images. I am currently running two different detection algorithms to help me detect any logos on the image. The first detection I use is Histogram based in which I search the image for a general area on screen where the colors are very similar. From there I run SIFT to further get the object that I am looking for. This works on most logos however the Target logo that I have isn't even picking up and keypoints in the logo.
I was wondering if there was anything I could do to help locate some keypoints in the image. Any advice is greatly appreciated.
Below is the image that isn't being picked up by SIFT:
Thanks in advance.
EDIT
I tired using Julien's idea for template matching based and different scales and rotations of the model, but still got little results. I have included an image that I am trying to test against.
There is no keypoint in your image...
Why ?
Because there is no keypoint in a uniform color plane (why would there be ? as it is uniform nothing is an highlight)
Because everything is symmetric in your image, it wouldn't really help to have keypoints, according to certain feature extractor they would have the same feature vectors
Because there's no corner or high gradient in cross directions which would result in keypoints fro many feature detectors
What you could try is a template matching method if you are searching for this logo without big changes (rotation, translation, noise etc) a simple correlation is the easiiiiest.
If you want to go further, one of my idea, that I have never implemented but which could be funny : would be to have sets of this image that you scale, rotate, warp, desaturate, increase noise with functions and then apply template matching with this set of images you got from your former template...
Well this idea comes from SIFT and Wavelet transform, where we use sort of functions that we change in some ways (rotation, noise, frequency etc...) in order to give robustness to our transform against these basic changes that occur in any image that you want to "inspect".
That could be an idea for you !
Here is an image summarizing my idea, you rotate and scale your template, actually it creates a new rotated/scaled template that you can try to match, it will increase robustness (even if it can be very long if you choose a lot of parameters to change). Well i'm not saying that's an algorithm, but it could be a funny and very basic idea to try...
Julien,
There is another reason that this logo is problematic for feature matching. Most features work pretty bad with artificial images that doesn't have any smoothness. All the derivatives are exactly 1 pixel size and features detector rely on derivatives. You have to smooth the image a bit. Ofcorse for this specific logo it will not help due to high symmetry. You can use hough transform to detect circles inside circles. It would give you better results in comparison with template matching.
I think you can try using MSER features- https://en.wikipedia.org/wiki/Maximally_stable_extremal_regions
See an example:
https://www.mathworks.com/examples/matlab-computer-vision/mw/vision_product-TextDetectionExample-automatically-detect-and-recognize-text-in-natural-images
What is the efficient way to compare two images in visual c..?
Also in which format images has to be stored.(bmp, gif , jpeg.....)?
Please provide some suggestions
If the images you are trying to compare have distinctive characteristics that you are trying to differentiate then PCA is an excellent way to go. The question of what format of the file you need is irrelevant really; you need to load it into the program as an array of numbers and do analysis.
Your question opens a can of worms in terms of complexity.
If you want to compare two images to check if they are the same, then you need to perform an md5 on the file (removing possible metainfos which could distort your result).
If you want to compare if they look the same, then it's a completely different story altogether. "Look the same" is intended in a very loose meaning (e.g. they are exactly the same image but stored with two different file formats). For this, you need advanced algorithms, which will give you a probability for two images to be the same. Not being an expert in the field, I would perform the following "invented out of my head" algorithm:
take an arbitrary set of pixel points from the image.
for each pixel "grow" a polygon out of the surrounding pixels which are near in color (according to HSV colorspace)
do the same for the other image
for each polygon of one image, check the geometrical similitude with all the other polygons in the other image, and pick the highest value. Divide this value by the area of the polygon (to normalize).
create a vector out of the highest values obtained
the higher is the norm of this vector, the higher is the chance that the two images are the same.
This algorithm should be insensitive to color drift and image rotation. Maybe also scaling (you normalize against the area). But I restate: not an expert, there's probably much better, and it could make kittens cry.
I did something similar to detect movement from a MJPEG stream and record images only when movement occurs.
For each decoded image, I compared to the previous using the following method.
Resize the image to effectively thumbnail size (I resized fairly hi-res images down by a factor of ten
Compare the brightness of each pixel to the previous image and flag if it is much lighter or darker (threshold value 1)
Once you've done that for each pixel, you can use the count of different pixels to determine whether the image is the same or different (threshold value 2)
Then it was just a matter of tuning the two threshold values.
I did the comparisons using System.Drawing.Bitmap, but as my source images were jpg, there were some artifacting.
It's a nice simple way to compare images for differences if you're going to roll it yourself.
If you want to determine if 2 images are the same perceptually, I believe the best way to do it is using an Image Hashing algorithm. You'd compute the hash of both images and you'd be able to use the hashes to get a confidence rating of how much they match.
One that I've had some success with is pHash, though I don't know how easy it would be to use with Visual C. Searching for "Geometric Hashing" or "Image Hashing" might be helpful.
Testing for strict identity is simple: Just compare every pixel in source image A to the corresponding pixel value in image B. If all pixels are identical, the images are identical.
But I guess don't want this kind of strict identity. You probably want images to be "identical" even if certain transformations have been applied to image B. Examples for these transformations might be:
changing image brightness globally (for every pixel)
changing image brightness locally (for every pixel in a certain area)
changing image saturation golbally or locally
gamma correction
applying some kind of filter to the image (e.g. blurring, sharpening)
changing the size of the image
rotation
e.g. printing an image and scanning it again would probably include all of the above.
In a nutshell, you have to decide which transformations you want to treat as "identical" and then find image measures that are invariant to those transformations. (Alternatively, you could try to revert the translations, but that's not possible if the transformation removes information from the image, like e.g. blurring or clipping the image)