I am using the Logistic Regression model in Scikit-Learn (in particular, LogisticRegressionCV). When I use the default tol value (which is 1e-4) and test the model with different random_state values, the feature coefficients do not fluctuate much. At least, I can see which features are important.
However, when I set a higher tol value (e.g., 2.3), each time I run the model, the feature coefficients highly fluctuate. When in one trial the feature A has the coefficient of -0.9, in the next run it could have 0.4.
This makes me think that the correct (or favorable) tol value should be the one when the results are more consistent.
Below is the related part of my code:
classifier = LogisticRegressionCV(penalty='l1', class_weight='balanced',
#tol=2.2,
solver='liblinear')
I wonder if there are guides to determine the appropriate tol value.
The tol parameter tells the optimization algorithm when to stop. If the value of tol is too big, the algorithm stops before it can converge. Here is what the docs say:
tol : float
Stopping criterion. For the newton-cg and lbfgs solvers, the iteration
will stop when ``max{|g_i | i = 1, ..., n} <= tol``
where ``g_i`` is the i-th component of the gradient.
It should have a similar meaning for the liblinear solver. If you are interested in the details, the description of the newGLMNET algorithm that the liblinear library uses to solve l1-regularized logistic regression can be found here and here.
Related
I have a huge data (1250 by 1m) as input for a multiple lasso fit. If I fit a normal regression by sklearn there there is an option to use multiple threads which in this case the whole process runs in a short time with an acceptable result.
sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize='deprecated', copy_X=True, n_jobs=None, positive=False)
In the upper line if I set n_jobs=-1 it will use all the cores available so that computational cost will drop dramatically.
But, there is no such an option for lasso regression in sklearn:
sklearn.linear_model.Lasso(alpha=1.0, *, fit_intercept=True, normalize='deprecated', precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic')
Obviously, it is really computationally expensive if I run this fitting on a single core.
Questions:
Is there any way to do a multiple lasso regression?
If there isn't any way for parallel lasso regression, what is the root of this limitation? What is the difference between minimization of lost function for regression and lasso regression?
As stated in the documentation for n_jobs :
n_jobs int, default=None
The number of jobs to use for the computation. This will only provide speedup in case of sufficiently large problems, that is if firstly n_targets > 1 and secondly X is sparse or if positive is set to True.
You need to have more than 1 target, your dependent variable needs to have 2 or more columns
The parallelization work by fitting a model on each of the y-variable separately as you can see from the source code :
if self.positive:
if y.ndim < 2:
self.coef_ = optimize.nnls(X, y)[0]
else:
# scipy.optimize.nnls cannot handle y with shape (M, K)
outs = Parallel(n_jobs=n_jobs_)(
delayed(optimize.nnls)(X, y[:, j]) for j in range(y.shape[1])
)
self.coef_ = np.vstack([out[0] for out in outs])
I am not sure if you have more than 1 target variable. If that is indeed the case, you can consider using MultiOutputRegressor
I don't think there's a way to parallelize fitting a lasso or linear model when there's only 1 target variable.
I have 38 variables, like oxygen, temperature, pressure, etc and have a task to determine the total yield produced every day from these variables. When I calculate the regression coefficients and intercept value, they seem to be abnormal and very high (Impractical). For example, if 'temperature' coefficient was found to be +375.456, I could not give a meaning to them saying an increase in one unit in temperature would increase yield by 375.456g. That's impractical in my scenario. However, the prediction accuracy seems right. I would like to know, how to interpret these huge intercept( -5341.27355) and huge beta values shown below. One other important point is that I removed multicolinear columns and also, I am not scaling the variables/normalizing them because I need beta coefficients to have meaning such that I could say, increase in temperature by one unit increases yield by 10g or so. Your inputs are highly appreciated!
modl.intercept_
Out[375]: -5341.27354961415
modl.coef_
Out[376]:
array([ 1.38096017e+00, -7.62388829e+00, 5.64611255e+00, 2.26124164e-01,
4.21908571e-01, 4.50695302e-01, -8.15167717e-01, 1.82390184e+00,
-3.32849969e+02, 3.31942553e+02, 3.58830763e+02, -2.05076898e-01,
-3.06404757e+02, 7.86012402e+00, 3.21339318e+02, -7.00817205e-01,
-1.09676321e+04, 1.91481734e+00, 6.02929848e+01, 8.33731416e+00,
-6.23433431e+01, -1.88442804e+00, 6.86526274e+00, -6.76103795e+01,
-1.11406021e+02, 2.48270706e+02, 2.94836048e+01, 1.00279016e+02,
1.42906659e-02, -2.13019683e-03, -6.71427100e+02, -2.03158515e+02,
9.32094007e-03, 5.56457014e+01, -2.91724945e+00, 4.78691176e-01,
8.78121854e+00, -4.93696073e+00])
It's very unlikely that all of these variables are linearly correlated, so I would suggest that you have a look at simple non-linear regression techniques, such as Decision Trees or Kernel Ridge Regression. These are however more difficult to interpret.
Going back to your issue, these high weights might well be due to there being some high amount of correlation between the variables, or that you simply don't have very much training data.
If you instead of linear regression use Lasso Regression, the solution is biased away from high regression coefficients, and the fit will likely improve as well.
A small example on how to do this in scikit-learn, including cross validation of the regularization hyper-parameter:
from sklearn.linear_model LassoCV
# Make up some data
n_samples = 100
n_features = 5
X = np.random.random((n_samples, n_features))
# Make y linear dependent on the features
y = np.sum(np.random.random((1,n_features)) * X, axis=1)
model = LassoCV(cv=5, n_alphas=100, fit_intercept=True)
model.fit(X,y)
print(model.intercept_)
If you have a linear regression, the formula looks like this (y= target, x= features inputs):
y= x1*b1 +x2*b2 + x3*b3 + x4*b4...+ c
where b1,b2,b3,b4... are your modl.coef_. AS you already realized one of your bigges number is 3.319+02 = 331 and the intercept is also quite big with -5431.
As you already mentioned the coeffiecient variables means how much the target variable changes, if the coeffiecient feature changes with 1 unit and all others features are constant.
so for your interpretation, the higher the absoult coeffienct, the higher the influence of your analysis. But it is important to note that the model is using a lot of high coefficient, that means your model is not depending only of one variable
In the lightGBM model, there are 2 parameters related to bagging
bagging_fraction
bagging_freq (frequency for bagging
0 means disable bagging; k means perform bagging at every k
iteration
Note: to enable bagging, bagging_fraction should be set to
value smaller than 1.0 as well)
I could find some more detailed explanation about this bagging function in gdbt. So is there anybody give me a more detailed explaination?
The code executes what documentation says- it samples a subset of training examples of the size bagging_fraction * N_train_examples. And training of the i-th tree is performed on this subset. This sampling can be done for each tree (i.e. each iteration) or after each bagging_freq trees have been trained.
For example, bagging_fraction=0.5, bagging_freq=10 means that sampling of new 0.5*N_train_examples entries will happen every 10 iterations
I am moving my first steps in neural networks and to do so I am experimenting with a very simple single layer, single output perceptron which uses a sigmoidal activation function. I am updating my weights on-line each time a training example is presented using:
weights += learningRate * (correct - result) * {input,1}
Here weights is a n-length vector which also contains the weight from the bias neuron (- threshold), result is the result as computed by the perceptron (and processed using the sigmoid) when given the input, correct is the correct result and {input,1} is the input augmented with 1 (the fixed input from the bias neuron). Now, when I try to train the perceptron to perform logic AND, the weights don't converge for a long time, instead they keep growing similarly and they maintain a ratio of circa -1.5 with the threshold, for instance the three weights are in sequence:
5.067160008240718 5.105631826680446 -7.945513136885797
...
8.40390853077094 8.43890306970281 -12.889540730182592
I would expect the perceptron to stop at 1, 1, -1.5.
Apart from this problem, which looks like connected to some missing stopping condition in the learning, if I try to use the identity function as activation function, I get weight values oscillating around:
0.43601272528257057 0.49092558197172703 -0.23106430854347537
and I obtain similar results with tanh. I can't give an explanation to this.
Thank you
Tunnuz
It is because the sigmoid activation function doesn't reach one (or zero) even with very highly positive (or negative) inputs. So (correct - result) will always be non-zero, and your weights will always get updated. Try it with the step function as the activation function (i.e. f(x) = 1 for x > 0, f(x) = 0 otherwise).
Your average weight values don't seem right for the identity activation function. It might be that your learning rate is a little high -- try reducing it and see if that reduces the size of the oscillations.
Also, when doing online learning (aka stochastic gradient descent), it is common practice to reduce the learning rate over time so that you converge to a solution. Otherwise your weights will continue to oscillate.
When trying to analyze the behavior of the perception, it helps to also look at correct and result.
Is it a good practice to use sigmoid or tanh output layers in Neural networks directly to estimate probabilities?
i.e the probability of given input to occur is the output of sigmoid function in the NN
EDIT
I wanted to use neural network to learn and predict the probability of a given input to occur..
You may consider the input as State1-Action-State2 tuple.
Hence the output of NN is the probability that State2 happens when applying Action on State1..
I Hope that does clear things..
EDIT
When training NN, I do random Action on State1 and observe resultant State2; then teach NN that input State1-Action-State2 should result in output 1.0
First, just a couple of small points on the conventional MLP lexicon (might help for internet searches, etc.): 'sigmoid' and 'tanh' are not 'output layers' but functions, usually referred to as "activation functions". The return value of the activation function is indeed the output from each layer, but they are not the output layer themselves (nor do they calculate probabilities).
Additionally, your question recites a choice between two "alternatives" ("sigmoid and tanh"), but they are not actually alternatives, rather the term 'sigmoidal function' is a generic/informal term for a class of functions, which includes the hyperbolic tangent ('tanh') that you refer to.
The term 'sigmoidal' is probably due to the characteristic shape of the function--the return (y) values are constrained between two asymptotic values regardless of the x value. The function output is usually normalized so that these two values are -1 and 1 (or 0 and 1). (This output behavior, by the way, is obviously inspired by the biological neuron which either fires (+1) or it doesn't (-1)). A look at the key properties of sigmoidal functions and you can see why they are ideally suited as activation functions in feed-forward, backpropagating neural networks: (i) real-valued and differentiable, (ii) having exactly one inflection point, and (iii) having a pair of horizontal asymptotes.
In turn, the sigmoidal function is one category of functions used as the activation function (aka "squashing function") in FF neural networks solved using backprop. During training or prediction, the weighted sum of the inputs (for a given layer, one layer at a time) is passed in as an argument to the activation function which returns the output for that layer. Another group of functions apparently used as the activation function is piecewise linear function. The step function is the binary variant of a PLF:
def step_fn(x) :
if x <= 0 :
y = 0
if x > 0 :
y = 1
(On practical grounds, I doubt the step function is a plausible choice for the activation function, but perhaps it helps understand the purpose of the activation function in NN operation.)
I suppose there an unlimited number of possible activation functions, but in practice, you only see a handful; in fact just two account for the overwhelming majority of cases (both are sigmoidal). Here they are (in python) so you can experiment for yourself, given that the primary selection criterion is a practical one:
# logistic function
def sigmoid2(x) :
return 1 / (1 + e**(-x))
# hyperbolic tangent
def sigmoid1(x) :
return math.tanh(x)
what are the factors to consider in selecting an activation function?
First the function has to give the desired behavior (arising from or as evidenced by sigmoidal shape). Second, the function must be differentiable. This is a requirement for backpropagation, which is the optimization technique used during training to 'fill in' the values of the hidden layers.
For instance, the derivative of the hyperbolic tangent is (in terms of the output, which is how it is usually written) :
def dsigmoid(y) :
return 1.0 - y**2
Beyond those two requriements, what makes one function between than another is how efficiently it trains the network--i.e., which one causes convergence (reaching the local minimum error) in the fewest epochs?
#-------- Edit (see OP's comment below) ---------#
I am not quite sure i understood--sometimes it's difficult to communicate details of a NN, without the code, so i should probably just say that it's fine subject to this proviso: What you want the NN to predict must be the same as the dependent variable used during training. So for instance, if you train your NN using two states (e.g., 0, 1) as the single dependent variable (which is obviously missing from your testing/production data) then that's what your NN will return when run in "prediction mode" (post training, or with a competent weight matrix).
You should choose the right loss function to minimize.
The squared error does not lead to the maximum likelihood hypothesis here.
The squared error is derived from a model with Gaussian noise:
P(y|x,h) = k1 * e**-(k2 * (y - h(x))**2)
You estimate the probabilities directly. Your model is:
P(Y=1|x,h) = h(x)
P(Y=0|x,h) = 1 - h(x)
P(Y=1|x,h) is the probability that event Y=1 will happen after seeing x.
The maximum likelihood hypothesis for your model is:
h_max_likelihood = argmax_h product(
h(x)**y * (1-h(x))**(1-y) for x, y in examples)
This leads to the "cross entropy" loss function.
See chapter 6 in Mitchell's Machine Learning
for the loss function and its derivation.
There is one problem with this approach: if you have vectors from R^n and your network maps those vectors into the interval [0, 1], it will not be guaranteed that the network represents a valid probability density function, since the integral of the network is not guaranteed to equal 1.
E.g., a neural network could map any input form R^n to 1.0. But that is clearly not possible.
So the answer to your question is: no, you can't.
However, you can just say that your network never sees "unrealistic" code samples and thus ignore this fact. For a discussion of this (and also some more cool information on how to model PDFs with neural networks) see contrastive backprop.