TreebankLanguagePack function in Neural Network Dependency Parser - parsing

If I want to train the Stanford Neural Network Dependency Parser for another language, there is a need for a "treebankLanguagePack"(TLP) but the information about this TLP is very limited:
particularities of your treebank and the language it contains
If I have my "treebank" in another language that follows the same format as PTB, and my data is using CONLL format. The dependency format follows the "Universal Dependency" UD. Do I need this TLP?

As of the current CoreNLP release, the TreebankLanguagePack is used within the dependency parser only to 1) determine the input text encoding and 2) determine which tokens count as punctuation [1].
Your best bet for a quick solution, then, is probably to stick with the UD English TreebankLanguagePack. You should do this by specifying the property language as "UniversalEnglish" (whether you're accessing the dependency parser via code or command line). If you're using the dependency parser via the CoreNLP main entry point, this property key should be depparse.language.
Technical details
Two very subtle details follow. You probably don't need to worry about these if you're just trying to hack something together at first, but it's probably good to mention so that you can avoid apocalyptic / head-smashing bugs in the future.
Evaluation and punctuation: If you do choose to stick with UniversalEnglish, be aware that there is a hack in the evaluation code that overrides the punctuation set for English parsing in particular. Any changes you make to punctuation in PennTreebankLanguagePack (the TLP used for the UniversalEnglish language) will be ignored! If you need to get around this, it should be enough to copy and paste the PennTreebankLanguagePack into your own codebase and name it something different.
Potential memory leak: When building parse results to be returned to the user, the dependency parser draws from a pool of cached GrammaticalRelation objects. This cache does not live-update. This means that if you have relations which aren't formally defined in the language you specified via the language property, they will lead to the instantiation of a new object whenever those relations show up in parser predictions. (This can be a big deal memory-wise if you happen to store the parse objects somewhere.)
[1]: Punctuation is excluded during evaluation. This is a standard "cheat" used throughout the dependency parsing literature.

Related

How is Coq's parser implemented?

I was entirely amazed by how Coq's parser is implemented. e.g.
https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#lab347
It's so crazy that the parser seems ok to take any lexeme by giving notation command and subsequent parser is able to parse any expression as it is. So what it means is the grammar must be context sensitive. But this is so flexible that it absolutely goes beyond my comprehension.
Any pointers on how this kind of parser is theoretically feasible? How should it work? Any materials or knowledge would work. I just try to learn about this type of parser in general. Thanks.
Please do not ask me to read Coq's source myself. I want to check the idea in general but not a specific implementation.
Indeed, this notation system is very powerful and it was probably one of the reasons of Coq's success. In practice, this is a source of much complication in the source code. I think that #ejgallego should be able to tell you more about it but here is a quick explanation:
At the beginning, Coq's documents were evaluated sentence by sentence (sentences are separated by dots) by coqtop. Some commands can define notations and these modify the parsing rules when they are evaluated. Thus, later sentences are evaluated with a slightly different parser.
Since version 8.5, there is also a mechanism (the STM) to evaluate a document fully (many sentences in parallel) but there is some special mechanism for handling these notation commands (basically you have to wait for these to be evaluated before you can continue parsing and evaluating the rest of the document).
Thus, contrary to a normal programming language, where the compiler will take a document, pass it through the lexer, then the parser (parse the full document in one go), and then have an AST to give to the typer or other later stages, in Coq each command is parsed and evaluated separately. Thus, there is no need to resort to complex contextual grammars...
I'll drop my two cents to complement #Zimmi48's excellent answer.
Coq indeed features an extensible parser, which TTBOMK is mainly the work of Hugo Herbelin, built on the CAMLP4/CAMLP5 extensible parsing system by Daniel de Rauglaudre. Both are the canonical sources for information about the parser, I'll try to summarize what I know but note indeed that my experience with the system is short.
The CAMLPX system basically supports any LL1 grammar. Coq exposes to the user the whole set of grammar rules, allowing the user to redefine them. This is the base mechanism on which extensible grammars are built. Notations are compiled into parsing rules in the Metasyntax module, and unfolded in a latter post-processing phase. And that really is AFAICT.
The system itself hasn't changed much in the whole 8.x series, #Zimmi48's comments are more related to the internal processing of commands after parsing. I recently learned that Coq v7 had an even more powerful system for modifying the parser.
In words of Hugo Herbelin "the art of extensible parsing is a delicate one" and indeed it is, but Coq's achieved a pretty great implementation of it.

Partial parsing with flex/antlr

I encountered a problem while doing my student research project. I'm an electrical engineering student, but my project has somewhat to do with theoretical computer science: I need to parse a lot of pascal sourcecode-files for typedefinitions and constants and visualize all occurrences. The typedefinitions are spread recursively over various files, i.e. there is type a = byte in file x, in file y, there is a record (struct) b, that contains type a and then there is even a type c in file z that is an array of type b.
My idea so far was to learn about compiler construction, since the compiler has to resolve all typedefinitions and break them down to the elemental types.
So, I've read about compiler construction in two books (one of which is even written by the pascal inventor), but I'm lacking so many basics of theoretical computer science that it took me one week alone to work my way halfway through. What I've learned so far is that for achieving my goal, lexer and parser should be sufficient. Since this software is only a really smart part of the whole project, I can't spend so much time with it, so I started experimenting with flex and later with antlr.
My hope was, that parsing for typedefinitions only was such an easy task, that I could manage to do it with only using a scanner and let it do some parser's work: The pascal-files consist of 5 main-parts, each one being optional: A header with comments, a const-section, a type-section, a var-section and (in least cases) a code-section. Each section has a start-identifier but no clear end-identifier. So I started searching for the start of the type- and const-section (TYPE, CONST), discarding everything else. In flex, this is fairly easy, because it allows "start conditions". They can be used as various states like "INITIAL", "TYPE-SECTION", "CONST-SECTION" and "COMMENT" with different rules for each state. I wanted to get back a string from the scanner with following syntax " = ". There was one thing that made this task difficult: Some type contain comments like in this example: AuEingangsBool_t {PCMON} = MAX_AuEingangsFeld;. The scanner can not extract such type-definition with a regular expression.
My next step was to do it properly with scanner AND parser, so I searched for a parsergenerator and found antlr. Since I write the tool in C# anyway, I decided to use its scannergenerator, too, so that I do not have to communicate between different programs. Now I encountered following Problem: AFAIK, antlr does not support "start conditions" as flex do. That means, I have to scan the whole file (okay, comments still get discarded) and get a lot of unneccessary (and wrong) tokens. Because I don't use rules for the whole pascal grammar, the scanner would identify most keywords of the pascal syntax as user-identifiers and the parser would nag about all those series of tokens, that do not fit to type- and constant-defintions
Now, finally my question(s): Can anyone of you tell me, which approach leads anywhere for my project? Is there a possibility to scan only parts of the source-files with antlr? Or do I have to connect flex with antlr for that purpose? Can I tell antlr's parser to ignore every token that is not in the const- or type-section? Are those tools too powerful for my task and should I write own routines instead?
You'd be better off to find a compiler for Pascal, and simply modify to report the information you want. Presumably there is such a compiler for your Pascal, and often the source code for such compilers is available.
Otherwise you essentially need to build a parser. Building lexer, and then hacking around with the resulting lexemes, is essentially building a bad parser by ad hoc methods. ANTLR is a good way to go; you can define the lexemes (including means to pick up and ignore comments) pretty easily, especially for older dialects of Pascal. You'll need good BNF rules for the type information that you want, and translate those rules to the parser generator. What you can do to minimize work, is to cheat on rules for the parts of the language you don't care about. For instance, you could write an accurate subgrammar for assignment statements. Since you don't care about them, you can write a sloppy subgrammar that treats assignment statements as anything that begins with an identifier, is followed by arbitrary other tokens, and ends with semicolon. This kind of a grammar is called an "island grammar"; it is only accurate where it needs to be accurate.
I don't know about the recursive bit. Is there a reason you can't just process each file separately? The answer may depend on what information you want to know about each type declaration, and if you go deep enough, you may need a symbol table as well as an island parser. Parser generators offer you no help for this.
First, there can be type and const blocks within other blocks (procedures, in later Delphi versions also classes).
Moreover, I'm not entirely sure that you can actually simply scan for a const token, and then start parsing. Const is also used for other purposes in most common (Borland) Pascal dialects. Some keywords can be reused in a different context, and if you don't parse the global blockstructure, and only look for const and type in specific places you will erroneously start parsing there.
A base problem of course is the comments. Scanners cut out comments as early as possible, and don't regard them further. You probably have to setup the scanner so that comments are attached to the adjacent tokens as field (associate with token before or save them up till a certain token follows).
As far antlr vs flex, no clue. The only parsergenerator I have some minor experience in parsing Pascal with is Coco/R (a parsergenerator popular by Wirthians), but in general I (and many pascalians) prefer handcoded.

Alpha renaming in many languages

I have what I imagine will be a fairly involved technical challenge: I want to be able to reliably alpha-rename identifiers in multiple languages (as many as possible). This will require special consideration for each language, and I'm asking for advice for how to minimize the amount of work I need to do by sharing code. Something like a unified parsing or abstract syntax framework that already has support for many languages would be great.
For example, here is some python code:
def foo(x):
def bar(y):
return x+y
return bar
An alpha renaming of x to y changes the x to a y and preserves semantics. So it would become:
def foo(y):
def bar(y1):
return y+y1
return bar
See how we needed to rename y to y1 in order to keep from breaking the code? That is why this is a hard problem. It seems like the program would have to have a pretty good knowledge of what constitutes a scope, rather than just doing, say, a string search and replace.
I would also like to preserve as much of the formatting as possible: comments, spacing, indentation. But that is not 100% necessary, it would just be nice.
Any tips?
To do this safely, you need to be able to to determine
all the identifiers (and those things that are not, e.g., the middle of a comment) in your code
the scopes of validity for each identifer
the ability to substitute a new identifier for an old one in the text
the ability to determine if renaming an identifier causes another name to be shadowed
To determine identifiers accurately, you need a least a langauge-accurate lexer. Identifiers in PHP look different than the do in COBOL.
To determine scopes of validity, you have to be determine program structure in practice, since most "scopes" are defined by such structure. This means you need a langauge-accurate parser; scopes in PHP are different than scopes in COBOL.
To determine which names are valid in which scopes, you need to know the language scoping rules. Your language may insist that the identifier X will refer to different Xes depending on the context in which X is found (consider object constructors named X with different arguments). Now you need to be able to traverse the scope structures according to the naming rules. Single inheritance, multiple inheritance, overloading, default types all will pretty much require you to build a model of the scopes for the programs, insert the identifiers and corresponding types into each scope, and then climb from the point of encounter of an identifier in the program text through the various scopes according to the language semantics. You will need symbol tables, inheritance linkages, ASTs, and the ability to navigage all of these. These structures are different from PHP and COBOL, but they share lots of common ideas so you likely need a library with the common concept support.
To rename an identifier, you have to modify the text. In a million lines of code, you need to point carefully. Modifying an AST node is one way to point carefully. Actually, you need to modify all the identifiers that correspond to the one being renamed; you have to climb over the tree to find them all, or record in the AST where all the references exist so they can be found easily. After modifyingy the tree you have to regenerate the source text after modifying the AST. That's a lot of machinery; see my SO answer on how to prettyprint ASTs preseriving all of the stuff you reasonably suggest should be preserved.
(Your other choice is to keep track in the AST of where the text for the string is,
and the read/patch/write the file.)
Before you update the file, you need to check that you haven't shadowed something. Consider this code:
{ local x;
x=1;
{local y;
y=2;
{local z;
z=y
print(x);
}
}
}
We agree this code prints "1". Now we decide to rename y to x.
We've broken the scoping, and now the print statement which referred
conceptually to the outer x refers to an x captured by the renamed y. The code now prints "2", so our rename broke it. This means that one must check all the other identifiers in scopes in which the renamed variable might be found, to see if the new name "captures" some name we weren't expecting. (This would be legal if the print statement printed z).
This is a lot of machinery.
Yes, there is a framework that has almost all of this as well as a number of robust language front ends. See our DMS Software Reengineering Toolkit. It has parsers producing ASTs, prettyprinters to produce text back from ASTs, generic symbol table management machinery (including support for multiple inheritance), AST visiting/modification machinery. Ithas prettyprinting machinery to turn ASTs back into text. It has front ends for C, C++, COBOL and Java that implement name and type resolution (e.g. instanting symbol table scopes and identifier to symbol table entry mappings); it has front ends for many other langauges that don't have scoping implemented yet.
We've just finished an exercise in implementing "rename" for Java. (All the above issues of course appeared). We about about to start one for C++.
You could try to create Xtext based implementations for the involved languages. The Xtext framework provides reliable infrastructure for cross language rename refactoring. However, you'll have to provide a grammar a at least a "good enough" scope resolution for each language.
Languages mostly guarantee tokens will be unique, whatever the context. A naive first approach (and this will break many, many pieces of code) would be:
cp file file.orig
sed -i 's/\b(newTokenName)\b/TEMPTOKEN/g' file
sed -i 's/\b(oldTokenName)\b/newTokenName/g' file
With GNU sed, this will break on PHP. Rewriting \b to a general token match, like ([^a-zA-Z~$-_][^a-zA-Z0-9~$-_]) would work on most C, Java, PHP, and Python, but not Perl (need to add # and % to the token characters. Beyond that, it would require a plugin architecture that works for any language you wanted to add. At some point, there will be two languages whose variable and function naming rules will be incompatible, and at that point, you'll need to do more and more in the plugin.

Using Haskell's Parsec to parse binary files?

Parsec is designed to parse textual information, but it occurs to me that Parsec could also be suitable to do binary file format parsing for complex formats that involve conditional segments, out-of-order segments, etc.
Is there an ability to do this or a similar, alternative package that does this? If not, what is the best way in Haskell to parse binary file formats?
The key tools for parsing binary files are:
Data.Binary
cereal
attoparsec
Binary is the most general solution, Cereal can be great for limited data sizes, and attoparsec is perfectly fine for e.g. packet parsing. All of these are aimed at very high performance, unlike Parsec. There are many examples on hackage as well.
You might be interested in AttoParsec, which was designed for this purpose, I think.
I've used Data Binary successfully.
It works fine, though you might want to use Parsec 3, Attoparsec, or Iteratees. Parsec's reliance on String as its intermediate representation may bloat your memory footprint quite a bit, whereas the others can be configured to use ByteStrings.
Iteratees are particularly attractive because it is easier to ensure they won't hold onto the beginning of your input and can be fed chunks of data incrementally a they come available. This prevents you from having to read the entire input into memory in advance and lets you avoid other nasty workarounds like lazy IO.
The best approach depends on the format of the binary file.
Many binary formats are designed to make parsing easy (unlike text formats that are primarily to be read by humans). So any union data type will be preceded by a discriminator that tells you what type to expect, all fields are either fixed length or preceded by a length field, and so on. For this kind of data I would recommend Data.Binary; typically you create a matching Haskell data type for each type in the file, and then make each of those types an instance of Binary. Define the "get" method for reading; it returns a "Get" monad action which is basically a very simple parser. You will also need to define a "put" method.
On the other hand if your binary data doesn't fit into this kind of world then you will need attoparsec. I've never used that, so I can't comment further, but this blog post is very positive.

Parsing Source Code - Unique Identifiers for Different Languages? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 7 years ago.
Improve this question
I'm building an application that receives source code as input and analyzes several aspects of the code. It can accept code from many common languages, e.g. C/C++, C#, Java, Python, PHP, Pascal, SQL, and more (however many languages are unsupported, e.g. Ada, Cobol, Fortran). Once the language is known, my application knows what to do (I have different handlers for different languages).
Currently I'm asking the user to input the programming language the code is written in, and this is error-prone: although users know the programming languages, a small percentage of them (on rare occasions) click the wrong option just due to recklessness, and that breaks the system (i.e. my analysis fails).
It seems to me like there should be a way to figure out (in most cases) what the language is, from the input text itself. Several notes:
I'm receiving pure text and not file names, so I can't use the extension as a hint.
The user is not required to input complete source codes, and can also input code snippets (i.e. the include/import part may not be included).
it's clear to me that any algorithm I choose will not be 100% proof, certainly for very short input codes (e.g. that could be accepted by both Python and Ruby), in which cases I will still need the user's assistance, however I would like to minimize user involvement in the process to minimize mistakes.
Examples:
If the text contains "x->y()", I may know for sure it's C++ (?)
If the text contains "public static void main", I may know for sure it's Java (?)
If the text contains "for x := y to z do begin", I may know for sure it's Pascal (?)
My question:
Are you familiar with any standard library/method for figuring out automatically what the language of an input source code is?
What are the unique code "tokens" with which I could certainly differentiate one language from another?
I'm writing my code in Python but I believe the question to be language agnostic.
Thanks
Vim has a autodetect filetype feature. If you download vim sourcecode you will find a /vim/runtime/filetype.vim file.
For each language it checks the extension of the file and also, for some of them (most common), it has a function that can get the filetype from the source code. You can check that out. The code is pretty easy to understand and there are some very useful comments there.
build a generic tokenizer and then use a Bayesian filter on them. Use the existing "user checks a box" system to train it.
Here is a simple way to do it. Just run the parser on every language. Whatever language gets the farthest without encountering any errors (or has the fewest errors) wins.
This technique has the following advantages:
You already have most of the code necessary to do this.
The analysis can be done in parallel on multi-core machines.
Most languages can be eliminated very quickly.
This technique is very robust. Languages that might appear very similar when using a fuzzy analysis (baysian for example), would likely have many errors when the actual parser is run.
If a program is parsed correctly in two different languages, then there was never any hope of distinguishing them in the first place.
I think the problem is impossible. The best you can do is to come up with some probability that a program is in a particular language, and even then I would guess producing a solid probability is very hard. Problems that come to mind at once:
use of features like the C pre-processor can effectively mask the underlyuing language altogether
looking for keywords is not sufficient as the keywords can be used in other languages as identifiers
looking for actual language constructs requires you to parse the code, but to do that you need to know the language
what do you do about malformed code?
Those seem enough problems to solve to be going on with.
One program I know which even can distinguish several different languages within the same file is ohcount. You might get some ideas there, although I don't really know how they do it.
In general you can look for distinctive patterns:
Operators might be an indicator, such as := for Pascal/Modula/Oberon, => or the whole of LINQ in C#
Keywords would be another one as probably no two languages have the same set of keywords
Casing rules for identifiers, assuming the piece of code was writting conforming to best practices. Probably a very weak rule
Standard library functions or types. Especially for languages that usually rely heavily on them, such as PHP you might just use a long list of standard library functions.
You may create a set of rules, each of which indicates a possible set of languages if it matches. Intersecting the resulting lists will hopefully get you only one language.
The problem with this approach however, is that you need to do tokenizing and compare tokens (otherwise you can't really know what operators are or whether something you found was inside a comment or string). Tokenizing rules are different for each language as well, though; just splitting everything at whitespace and punctuation will probably not yield a very useful sequence of tokens. You can try several different tokenizing rules (each of which would indicate a certain set of languages as well) and have your rules match to a specified tokenization. For example, trying to find a single-quoted string (for trying out Pascal) in a VB snippet with one comment will probably fail, but another tokenizer might have more luck.
But since you want to perform analysis anyway you probably have parsers for the languages you support, so you can just try running the snippet through each parser and take that as indicator which language it would be (as suggested by OregonGhost as well).
Some thoughts:
$x->y() would be valid in PHP, so ensure that there's no $ symbol if you think C++ (though I think you can store function pointers in a C struct, so this could also be C).
public static void main is Java if it is cased properly - write Main and it's C#. This gets complicated if you take case-insensitive languages like many scripting languages or Pascal into account. The [] attribute syntax in C# on the other hand seems to be rather unique.
You can also try to use the keywords of a language - for example, Option Strict or End Sub are typical for VB and the like, while yield is likely C# and initialization/implementation are Object Pascal / Delphi.
If your application is analyzing the source code anyway, you code try to throw your analysis code at it for every language and if it fails really bad, it was the wrong language :)
My approach would be:
Create a list of strings or regexes (with and without case sensitivity), where each element has assigned a list of languages that the element is an indicator for:
class => C++, C#, Java
interface => C#, Java
implements => Java
[attribute] => C#
procedure => Pascal, Modula
create table / insert / ... => SQL
etc. Then parse the file line-by-line, match each element of the list, and count the hits.
The language with the most hits wins ;)
How about word frequency analysis (with a twist)? Parse the source code and categorise it much like a spam filter does. This way when a code snippet is entered into your app which cannot be 100% identified you can have it show the closest matches which the user can pick from - this can then be fed into your database.
Here's an idea for you. For each of your N languages, find some files in the language, something like 10-20 per language would be enough, each one not too short. Concatenate all files in one language together. Call this lang1.txt. GZip it to lang1.txt.gz. You will have a set of N langX.txt and langX.txt.gz files.
Now, take the file in question and append to each of he langX.txt files, producing langXapp.txt, and corresponding gzipped langXapp.txt.gz. For each X, find the difference between the size of langXapp.gz and langX.gz. The smallest difference will correspond to the language of your file.
Disclaimer: this will work reasonably well only for longer files. Also, it's not very efficient. But on the plus side you don't need to know anything about the language, it's completely automatic. And it can detect natural languages and tell between French or Chinese as well. Just in case you need it :) But the main reason, I just think it's interesting thing to try :)
The most bulletproof but also most work intensive way is to write a parser for each language and just run them in sequence to see which one would accept the code. This won't work well if code has syntax errors though and you most probably would have to deal with code like that, people do make mistakes. One of the fast ways to implement this is to get common compilers for every language you support and just run them and check how many errors they produce.
Heuristics works up to a certain point and the more languages you will support the less help you would get from them. But for first few versions it's a good start, mostly because it's fast to implement and works good enough in most cases. You could check for specific keywords, function/class names in API that is used often, some language constructions etc. Best way is to check how many of these specific stuff a file have for each possible language, this will help with some syntax errors, user defined functions with names like this() in languages that doesn't have such keywords, stuff written in comments and string literals.
Anyhow you most likely would fail sometimes so some mechanism for user to override language choice is still necessary.
I think you never should rely on one single feature, since the absence in a fragment (e.g. somebody systematically using WHILE instead of for) might confuse you.
Also try to stay away from global identifiers like "IMPORT" or "MODULE" or "UNIT" or INITIALIZATION/FINALIZATION, since they might not always exist, be optional in complete sources, and totally absent in fragments.
Dialects and similar languages (e.g. Modula2 and Pascal) are dangerous too.
I would create simple lexers for a bunch of languages that keep track of key tokens, and then simply calculate a key tokens to "other" identifiers ratio. Give each token a weight, since some might be a key indicator to disambiguate between dialects or versions.
Note that this is also a convenient way to allow users to plugin "known" keywords to increase the detection ratio, by e.g. providing identifiers of runtime library routines or types.
Very interesting question, I don't know if it is possible to be able to distinguish languages by code snippets, but here are some ideas:
One simple way is to watch out for single-quotes: In some languages, it is used as character wrapper, whereas in the others it can contain a whole string
A unary asterisk or a unary ampersand operator is a certain indication that it's either of C/C++/C#.
Pascal is the only language (of the ones given) to use two characters for assignments :=. Pascal has many unique keywords, too (begin, sub, end, ...)
The class initialization with a function could be a nice hint for Java.
Functions that do not belong to a class eliminates java (there is no max(), for example)
Naming of basic types (bool vs boolean)
Which reminds me: C++ can look very differently across projects (#define boolean int) So you can never guarantee, that you found the correct language.
If you run the source code through a hashing algorithm and it looks the same, you're most likely analyzing Perl
Indentation is a good hint for Python
You could use functions provided by the languages themselves - like token_get_all() for PHP - or third-party tools - like pychecker for python - to check the syntax
Summing it up: This project would make an interesting research paper (IMHO) and if you want it to work well, be prepared to put a lot of effort into it.
There is no way of making this foolproof, but I would personally start with operators, since they are in most cases "set in stone" (I can't say this holds true to every language since I know only a limited set). This would narrow it down quite considerably, but not nearly enough. For instance "->" is used in many languages (at least C, C++ and Perl).
I would go for something like this:
Create a list of features for each language, these could be operators, commenting style (since most use some sort of easily detectable character or character combination).
For instance:
Some languages have lines that start with the character "#", these include C, C++ and Perl. Do others than the first two use #include and #define in their vocabulary? If you detect this character at the beginning of line, the language is probably one of those. If the character is in the middle of the line, the language is most likely Perl.
Also, if you find the pattern := this would narrow it down to some likely languages.
Etc.
I would have a two-dimensional table with languages and patterns found and after analysis I would simply count which language had most "hits". If I wanted it to be really clever I would give each feature a weight which would signify how likely or unlikely it is that this feature is included in a snippet of this language. For instance if you can find a snippet that starts with /* and ends with */ it is more than likely that this is either C or C++.
The problem with keywords is someone might use it as a normal variable or even inside comments. They can be used as a decider (e.g. the word "class" is much more likely in C++ than C if everything else is equal), but you can't rely on them.
After the analysis I would offer the most likely language as the choice for the user with the rest ordered which would also be selectable. So the user would accept your guess by simply clicking a button, or he can switch it easily.
In answer to 2: if there's a "#!" and the name of an interpreter at the very beginning, then you definitely know which language it is. (Can't believe this wasn't mentioned by anyone else.)

Resources